

PyZMQ Documentation

PyZMQ is the Python bindings for ØMQ [https://zeromq.org/].
This documentation currently contains notes on some important aspects of developing PyZMQ and
an overview of what the ØMQ API looks like in Python. For information on how to use
ØMQ in general, see the many examples in the excellent ØMQ Guide [https://zguide.zeromq.org], all of which
have a version in Python.

PyZMQ works with Python 3 (≥ 3.7), as well as PyPy via CFFI.

Please don’t hesitate to report pyzmq-specific issues to our tracker [https://github.com/zeromq/pyzmq/issues] on GitHub.
General questions about ØMQ are better sent to the ØMQ tracker [https://github.com/zeromq/libzmq/issues] or mailing list [http://wiki.zeromq.org/docs:mailing-lists].

Changes in PyZMQ

Supported LibZMQ

PyZMQ aims to support all stable (≥ 3.2.2, ≥ 4.0.1)
versions of libzmq. Building the same pyzmq against various versions of libzmq is supported,
but only the functionality of the linked libzmq will be available.

Note

libzmq 3.0-3.1 are not supported,
as they never received a stable release.

Binary distributions (wheels on PyPI [https://pypi.org/project/pyzmq/]) of PyZMQ ship with
the stable version of libzmq at the time of release, built with default configuration,
and include CURVE support provided by libsodium.
For pyzmq-26.0.2, this is 4.3.5.

Using PyZMQ

To get started with ZeroMQ, read the ZeroMQ guide [https://zguide.zeromq.org],
which has every example implemented using PyZMQ.

You can also check out the examples in the pyzmq repo [https://github.com/zeromq/pyzmq/tree/HEAD/examples].

	The PyZMQ API
	zmq

	devices

	decorators

	green

	eventloop.ioloop

	eventloop.future

	asyncio

	eventloop.zmqstream

	auth

	auth.asyncio

	auth.thread

	auth.ioloop

	log.handlers

	ssh.tunnel

	utils.jsonapi

	utils.monitor

	utils.z85

	utils.win32

	Changes in PyZMQ
	26

	25

	24

	23.2.1

	23.2.0

	23.1.0

	23.0.0

	22.3.0

	22.2.1

	22.2.0

	22.1.0

	22.0.3

	22.0.2

	22.0.1

	22.0.0

	21.0.2

	21.0.1

	21.0

	20.0

	19.0.2

	19.0.1

	19.0

	18.1.1

	18.1.0

	18.0.2

	18.0.1

	18.0.0

	17.1.3

	17.1.2

	17.1.0

	17.0.0

	16.0.4

	16.0.3

	16.0.2

	16.0.1

	16.0

	15.4

	15.3

	15.2

	15.1

	15.0

	14.7.0

	14.6.0

	14.5.0

	14.4.1

	14.4.0

	14.3.1

	14.3.0

	14.2.0

	14.1.0

	14.0.1

	14.0.0

	13.1.0

	13.0.2

	13.0.1

	13.0.0

	2.2.0.1

	2.2.0

	2.1.11

	2.1.10

	2.1.9

	2.1.7.1

	2.1.7

	2.1.4

	Using PyZMQ
	Building pyzmq

	More Than Just Bindings

	Serializing messages with PyZMQ

	Devices in PyZMQ

	Eventloops and PyZMQ

	Working with libzmq DRAFT sockets

	Asynchronous Logging via PyZMQ

	Tunneling PyZMQ Connections with SSH

Indices and tables

	Index

	Module Index

	Search Page

Links

	ØMQ [https://zeromq.org/] Home

	The ØMQ Guide [https://zguide.zeromq.org]

	PyZMQ on GitHub [https://github.com/zeromq/pyzmq]

	Issue Tracker [https://github.com/zeromq/pyzmq/issues]

The PyZMQ API

	zmq
	Basic Classes
	Context
	Context
	Context.closed

	Context.destroy()

	Context.get()

	Context.getsockopt()

	Context.instance()

	Context.set()

	Context.setsockopt()

	Context.shadow()

	Context.shadow_pyczmq()

	Context.socket()

	Context.term()

	Context.underlying

	Socket
	Socket
	Socket.closed

	Socket.copy_threshold

	Socket.bind()

	Socket.bind_to_random_port()

	Socket.close()

	Socket.connect()

	Socket.disable_monitor()

	Socket.disconnect()

	Socket.fileno()

	Socket.get()

	Socket.get_hwm()

	Socket.get_monitor_socket()

	Socket.get_string()

	Socket.getsockopt()

	Socket.getsockopt_string()

	Socket.hwm

	Socket.join()

	Socket.leave()

	Socket.monitor()

	Socket.poll()

	Socket.recv()

	Socket.recv_json()

	Socket.recv_multipart()

	Socket.recv_pyobj()

	Socket.recv_serialized()

	Socket.recv_string()

	Socket.send()

	Socket.send_json()

	Socket.send_multipart()

	Socket.send_pyobj()

	Socket.send_serialized()

	Socket.send_string()

	Socket.set()

	Socket.set_hwm()

	Socket.set_string()

	Socket.setsockopt()

	Socket.setsockopt_string()

	Socket.shadow()

	Socket.subscribe()

	Socket.unbind()

	Socket.underlying

	Socket.unsubscribe()

	Frame
	Frame
	Frame.buffer

	Frame.bytes

	Frame.get()

	Frame.group

	Frame.routing_id

	Frame.set()

	MessageTracker
	MessageTracker
	MessageTracker.done

	MessageTracker.wait()

	Polling
	Poller
	Poller
	Poller.modify()

	Poller.poll()

	Poller.register()

	Poller.unregister()

	select()

	Constants
	COPY_THRESHOLD

	SocketType
	SocketType.PAIR

	SocketType.PUB

	SocketType.SUB

	SocketType.REQ

	SocketType.REP

	SocketType.DEALER

	SocketType.ROUTER

	SocketType.PULL

	SocketType.PUSH

	SocketType.XPUB

	SocketType.XSUB

	SocketType.STREAM

	SocketType.SERVER

	SocketType.CLIENT

	SocketType.RADIO

	SocketType.DISH

	SocketType.GATHER

	SocketType.SCATTER

	SocketType.DGRAM

	SocketType.PEER

	SocketType.CHANNEL

	SocketOption
	SocketOption.HWM

	SocketOption.AFFINITY

	SocketOption.ROUTING_ID

	SocketOption.SUBSCRIBE

	SocketOption.UNSUBSCRIBE

	SocketOption.RATE

	SocketOption.RECOVERY_IVL

	SocketOption.SNDBUF

	SocketOption.RCVBUF

	SocketOption.RCVMORE

	SocketOption.FD

	SocketOption.EVENTS

	SocketOption.TYPE

	SocketOption.LINGER

	SocketOption.RECONNECT_IVL

	SocketOption.BACKLOG

	SocketOption.RECONNECT_IVL_MAX

	SocketOption.MAXMSGSIZE

	SocketOption.SNDHWM

	SocketOption.RCVHWM

	SocketOption.MULTICAST_HOPS

	SocketOption.RCVTIMEO

	SocketOption.SNDTIMEO

	SocketOption.LAST_ENDPOINT

	SocketOption.ROUTER_MANDATORY

	SocketOption.TCP_KEEPALIVE

	SocketOption.TCP_KEEPALIVE_CNT

	SocketOption.TCP_KEEPALIVE_IDLE

	SocketOption.TCP_KEEPALIVE_INTVL

	SocketOption.IMMEDIATE

	SocketOption.XPUB_VERBOSE

	SocketOption.ROUTER_RAW

	SocketOption.IPV6

	SocketOption.MECHANISM

	SocketOption.PLAIN_SERVER

	SocketOption.PLAIN_USERNAME

	SocketOption.PLAIN_PASSWORD

	SocketOption.CURVE_SERVER

	SocketOption.CURVE_PUBLICKEY

	SocketOption.CURVE_SECRETKEY

	SocketOption.CURVE_SERVERKEY

	SocketOption.PROBE_ROUTER

	SocketOption.REQ_CORRELATE

	SocketOption.REQ_RELAXED

	SocketOption.CONFLATE

	SocketOption.ZAP_DOMAIN

	SocketOption.ROUTER_HANDOVER

	SocketOption.TOS

	SocketOption.CONNECT_ROUTING_ID

	SocketOption.GSSAPI_SERVER

	SocketOption.GSSAPI_PRINCIPAL

	SocketOption.GSSAPI_SERVICE_PRINCIPAL

	SocketOption.GSSAPI_PLAINTEXT

	SocketOption.HANDSHAKE_IVL

	SocketOption.SOCKS_PROXY

	SocketOption.XPUB_NODROP

	SocketOption.BLOCKY

	SocketOption.XPUB_MANUAL

	SocketOption.XPUB_WELCOME_MSG

	SocketOption.STREAM_NOTIFY

	SocketOption.INVERT_MATCHING

	SocketOption.HEARTBEAT_IVL

	SocketOption.HEARTBEAT_TTL

	SocketOption.HEARTBEAT_TIMEOUT

	SocketOption.XPUB_VERBOSER

	SocketOption.CONNECT_TIMEOUT

	SocketOption.TCP_MAXRT

	SocketOption.THREAD_SAFE

	SocketOption.MULTICAST_MAXTPDU

	SocketOption.VMCI_BUFFER_SIZE

	SocketOption.VMCI_BUFFER_MIN_SIZE

	SocketOption.VMCI_BUFFER_MAX_SIZE

	SocketOption.VMCI_CONNECT_TIMEOUT

	SocketOption.USE_FD

	SocketOption.GSSAPI_PRINCIPAL_NAMETYPE

	SocketOption.GSSAPI_SERVICE_PRINCIPAL_NAMETYPE

	SocketOption.BINDTODEVICE

	SocketOption.TCP_ACCEPT_FILTER

	SocketOption.IPC_FILTER_PID

	SocketOption.IPC_FILTER_UID

	SocketOption.IPC_FILTER_GID

	SocketOption.IPV4ONLY

	SocketOption.ZAP_ENFORCE_DOMAIN

	SocketOption.LOOPBACK_FASTPATH

	SocketOption.METADATA

	SocketOption.MULTICAST_LOOP

	SocketOption.ROUTER_NOTIFY

	SocketOption.XPUB_MANUAL_LAST_VALUE

	SocketOption.SOCKS_USERNAME

	SocketOption.SOCKS_PASSWORD

	SocketOption.IN_BATCH_SIZE

	SocketOption.OUT_BATCH_SIZE

	SocketOption.WSS_KEY_PEM

	SocketOption.WSS_CERT_PEM

	SocketOption.WSS_TRUST_PEM

	SocketOption.WSS_HOSTNAME

	SocketOption.WSS_TRUST_SYSTEM

	SocketOption.ONLY_FIRST_SUBSCRIBE

	SocketOption.RECONNECT_STOP

	SocketOption.HELLO_MSG

	SocketOption.DISCONNECT_MSG

	SocketOption.PRIORITY

	SocketOption.BUSY_POLL

	SocketOption.HICCUP_MSG

	SocketOption.XSUB_VERBOSE_UNSUBSCRIBE

	SocketOption.TOPICS_COUNT

	SocketOption.NORM_MODE

	SocketOption.NORM_UNICAST_NACK

	SocketOption.NORM_BUFFER_SIZE

	SocketOption.NORM_SEGMENT_SIZE

	SocketOption.NORM_BLOCK_SIZE

	SocketOption.NORM_NUM_PARITY

	SocketOption.NORM_NUM_AUTOPARITY

	SocketOption.NORM_PUSH

	Flag
	Flag.DONTWAIT

	Flag.SNDMORE

	PollEvent
	PollEvent.POLLIN

	PollEvent.POLLOUT

	PollEvent.POLLERR

	PollEvent.POLLPRI

	ContextOption
	ContextOption.IO_THREADS

	ContextOption.MAX_SOCKETS

	ContextOption.SOCKET_LIMIT

	ContextOption.THREAD_SCHED_POLICY

	ContextOption.MAX_MSGSZ

	ContextOption.MSG_T_SIZE

	ContextOption.THREAD_AFFINITY_CPU_ADD

	ContextOption.THREAD_AFFINITY_CPU_REMOVE

	ContextOption.THREAD_NAME_PREFIX

	MessageOption
	MessageOption.MORE

	MessageOption.SHARED

	MessageOption.SRCFD

	Event
	Event.PROTOCOL_ERROR_ZMTP_UNSPECIFIED

	Event.PROTOCOL_ERROR_ZAP_UNSPECIFIED

	Event.CONNECTED

	Event.CONNECT_DELAYED

	Event.CONNECT_RETRIED

	Event.LISTENING

	Event.BIND_FAILED

	Event.ACCEPTED

	Event.ACCEPT_FAILED

	Event.CLOSED

	Event.CLOSE_FAILED

	Event.DISCONNECTED

	Event.MONITOR_STOPPED

	Event.HANDSHAKE_FAILED_NO_DETAIL

	Event.HANDSHAKE_SUCCEEDED

	Event.HANDSHAKE_FAILED_PROTOCOL

	Event.HANDSHAKE_FAILED_AUTH

	Event.PIPES_STATS

	NormMode
	NormMode.FIXED

	NormMode.CC

	NormMode.CCL

	NormMode.CCE

	NormMode.CCE_ECNONLY

	RouterNotify
	RouterNotify.CONNECT

	RouterNotify.DISCONNECT

	ReconnectStop
	ReconnectStop.CONN_REFUSED

	ReconnectStop.HANDSHAKE_FAILED

	ReconnectStop.AFTER_DISCONNECT

	SecurityMechanism
	SecurityMechanism.NULL

	SecurityMechanism.PLAIN

	SecurityMechanism.CURVE

	SecurityMechanism.GSSAPI

	DeviceType
	DeviceType.STREAMER

	DeviceType.FORWARDER

	DeviceType.QUEUE

	Errno
	Errno.EAGAIN

	Errno.EFAULT

	Errno.EINVAL

	Errno.ENOTSUP

	Errno.EPROTONOSUPPORT

	Errno.ENOBUFS

	Errno.ENETDOWN

	Errno.EADDRINUSE

	Errno.EADDRNOTAVAIL

	Errno.ECONNREFUSED

	Errno.EINPROGRESS

	Errno.ENOTSOCK

	Errno.EMSGSIZE

	Errno.EAFNOSUPPORT

	Errno.ENETUNREACH

	Errno.ECONNABORTED

	Errno.ECONNRESET

	Errno.ENOTCONN

	Errno.ETIMEDOUT

	Errno.EHOSTUNREACH

	Errno.ENETRESET

	Errno.EFSM

	Errno.ENOCOMPATPROTO

	Errno.ETERM

	Errno.EMTHREAD

	Exceptions
	ZMQError
	ZMQError
	ZMQError.add_note()

	ZMQError.with_traceback()

	ZMQVersionError
	ZMQVersionError
	ZMQVersionError.add_note()

	ZMQVersionError.with_traceback()

	Again
	Again

	ContextTerminated
	ContextTerminated

	NotDone
	NotDone

	ZMQBindError
	ZMQBindError

	Functions
	zmq_version()

	pyzmq_version()

	zmq_version_info()

	pyzmq_version_info()

	has()

	device()

	proxy()

	proxy_steerable()

	curve_public()

	curve_keypair()

	get_includes()

	get_library_dirs()

	strerror()

	devices
	Functions

	Module: zmq.devices

	Base Devices
	Device
	Device
	Device.daemon

	Device.context_factory

	Device.bind_in()

	Device.bind_in_to_random_port()

	Device.bind_out()

	Device.bind_out_to_random_port()

	Device.connect_in()

	Device.connect_out()

	Device.join()

	Device.setsockopt_in()

	Device.setsockopt_out()

	Device.start()

	ThreadDevice
	ThreadDevice

	ProcessDevice
	ProcessDevice
	ProcessDevice.context_factory

	Proxy Devices
	Proxy
	Proxy
	Proxy.bind_mon()

	Proxy.connect_mon()

	Proxy.setsockopt_mon()

	ThreadProxy
	ThreadProxy

	ProcessProxy
	ProcessProxy

	ProxySteerable
	ProxySteerable
	ProxySteerable.bind_ctrl()

	ProxySteerable.connect_ctrl()

	ProxySteerable.setsockopt_ctrl()

	ThreadProxySteerable
	ThreadProxySteerable

	ProcessProxySteerable
	ProcessProxySteerable

	MonitoredQueue Devices
	monitored_queue()

	MonitoredQueue
	MonitoredQueue

	ThreadMonitoredQueue
	ThreadMonitoredQueue

	ProcessMonitoredQueue
	ProcessMonitoredQueue

	decorators
	Module: zmq.decorators

	Decorators
	context()

	socket()

	green
	Module: zmq.green
	Usage

	eventloop.ioloop
	Module: zmq.eventloop.ioloop

	eventloop.future
	Module: zmq.eventloop.future

	Classes
	Context
	Context

	Socket
	Socket

	Poller
	Poller

	asyncio
	Module: zmq.asyncio

	Classes
	Context
	Context

	Socket
	Socket
	Socket.recv()

	Socket.recv_multipart()

	Socket.send()

	Socket.send_multipart()

	Socket.poll()

	Poller
	Poller
	Poller.poll()

	eventloop.zmqstream
	Module: zmq.eventloop.zmqstream

	ZMQStream
	ZMQStream
	ZMQStream.close()

	ZMQStream.closed()

	ZMQStream.flush()

	ZMQStream.io_loop

	ZMQStream.on_err()

	ZMQStream.on_recv()

	ZMQStream.on_recv_stream()

	ZMQStream.on_send()

	ZMQStream.on_send_stream()

	ZMQStream.poller

	ZMQStream.receiving()

	ZMQStream.send()

	ZMQStream.send_json()

	ZMQStream.send_multipart()

	ZMQStream.send_pyobj()

	ZMQStream.send_string()

	ZMQStream.send_unicode()

	ZMQStream.sending()

	ZMQStream.set_close_callback()

	ZMQStream.socket

	ZMQStream.stop_on_err()

	ZMQStream.stop_on_recv()

	ZMQStream.stop_on_send()

	auth
	Module: zmq.auth

	Authenticator
	Authenticator
	Authenticator.allow()

	Authenticator.allow_any

	Authenticator.certs

	Authenticator.configure_curve()

	Authenticator.configure_curve_callback()

	Authenticator.configure_gssapi()

	Authenticator.configure_plain()

	Authenticator.context

	Authenticator.credentials_providers

	Authenticator.curve_user_id()

	Authenticator.deny()

	Authenticator.encoding

	Authenticator.handle_zap_message()

	Authenticator.log

	Authenticator.passwords

	Authenticator.start()

	Authenticator.stop()

	Authenticator.zap_socket

	Functions
	create_certificates()

	load_certificate()

	load_certificates()

	auth.asyncio
	Module: zmq.auth.asyncio

	Classes
	AsyncioAuthenticator
	AsyncioAuthenticator
	AsyncioAuthenticator.allow()

	AsyncioAuthenticator.allow_any

	AsyncioAuthenticator.certs

	AsyncioAuthenticator.configure_curve()

	AsyncioAuthenticator.configure_curve_callback()

	AsyncioAuthenticator.configure_gssapi()

	AsyncioAuthenticator.configure_plain()

	AsyncioAuthenticator.context

	AsyncioAuthenticator.credentials_providers

	AsyncioAuthenticator.curve_user_id()

	AsyncioAuthenticator.deny()

	AsyncioAuthenticator.encoding

	AsyncioAuthenticator.handle_zap_message()

	AsyncioAuthenticator.log

	AsyncioAuthenticator.passwords

	AsyncioAuthenticator.start()

	AsyncioAuthenticator.stop()

	AsyncioAuthenticator.zap_socket

	auth.thread
	Module: zmq.auth.thread

	Classes
	ThreadAuthenticator
	ThreadAuthenticator
	ThreadAuthenticator.allow()

	ThreadAuthenticator.allow_any

	ThreadAuthenticator.certs

	ThreadAuthenticator.configure_curve()

	ThreadAuthenticator.configure_curve_callback()

	ThreadAuthenticator.configure_gssapi()

	ThreadAuthenticator.configure_plain()

	ThreadAuthenticator.context

	ThreadAuthenticator.credentials_providers

	ThreadAuthenticator.curve_user_id()

	ThreadAuthenticator.deny()

	ThreadAuthenticator.encoding

	ThreadAuthenticator.handle_zap_message()

	ThreadAuthenticator.is_alive()

	ThreadAuthenticator.log

	ThreadAuthenticator.passwords

	ThreadAuthenticator.pipe

	ThreadAuthenticator.pipe_endpoint

	ThreadAuthenticator.start()

	ThreadAuthenticator.stop()

	ThreadAuthenticator.thread

	ThreadAuthenticator.zap_socket

	AuthenticationThread

	auth.ioloop
	Module: :mod}`zmq.auth.ioloop`

	log.handlers
	Module: zmq.log.handlers

	Classes
	PUBHandler
	PUBHandler
	PUBHandler.acquire()

	PUBHandler.addFilter()

	PUBHandler.close()

	PUBHandler.createLock()

	PUBHandler.ctx

	PUBHandler.emit()

	PUBHandler.filter()

	PUBHandler.flush()

	PUBHandler.format()

	PUBHandler.get_name()

	PUBHandler.handle()

	PUBHandler.handleError()

	PUBHandler.name

	PUBHandler.release()

	PUBHandler.removeFilter()

	PUBHandler.root_topic

	PUBHandler.setFormatter()

	PUBHandler.setLevel()

	PUBHandler.setRootTopic()

	PUBHandler.set_name()

	PUBHandler.socket

	TopicLogger
	TopicLogger
	TopicLogger.addFilter()

	TopicLogger.addHandler()

	TopicLogger.callHandlers()

	TopicLogger.critical()

	TopicLogger.debug()

	TopicLogger.error()

	TopicLogger.exception()

	TopicLogger.fatal()

	TopicLogger.filter()

	TopicLogger.findCaller()

	TopicLogger.getChild()

	TopicLogger.getEffectiveLevel()

	TopicLogger.handle()

	TopicLogger.hasHandlers()

	TopicLogger.info()

	TopicLogger.isEnabledFor()

	TopicLogger.log()

	TopicLogger.makeRecord()

	TopicLogger.manager

	TopicLogger.removeFilter()

	TopicLogger.removeHandler()

	TopicLogger.root

	TopicLogger.setLevel()

	TopicLogger.warn()

	TopicLogger.warning()

	ssh.tunnel
	Module: zmq.ssh.tunnel

	Functions
	open_tunnel()

	select_random_ports()

	try_passwordless_ssh()

	tunnel_connection()

	utils.jsonapi
	Module: zmq.utils.jsonapi

	Functions
	dumps()

	loads()

	utils.monitor
	Module: zmq.utils.monitor

	Functions
	parse_monitor_message()

	recv_monitor_message()

	utils.z85
	Module: zmq.utils.z85

	Functions
	decode()

	encode()

	utils.win32
	Module: zmq.utils.win32

	allow_interrupt
	allow_interrupt

zmq

Python bindings for 0MQ

Basic Classes

Note

For typing purposes, zmq.Context and zmq.Socket are Generics,
which means they will accept any Context or Socket implementation.

The base zmq.Context() constructor returns the type
zmq.Context[zmq.Socket[bytes]].
If you are using type annotations and want to exclude the async subclasses,
use the resolved types instead of the base Generics:

ctx: zmq.Context[zmq.Socket[bytes]] = zmq.Context()
sock: zmq.Socket[bytes]

in pyzmq 26, these are available as the Type Aliases (not actual classes!):

ctx: zmq.SyncContext = zmq.Context()
sock: zmq.SyncSocket

Context

	
class zmq.Context(io_threads: int [https://docs.python.org/3/library/functions.html#int] = 1)

	
class zmq.Context(io_threads: Context)

	
class zmq.Context(*, shadow: Context | int [https://docs.python.org/3/library/functions.html#int])

	Create a zmq Context

A zmq Context creates sockets via its ctx.socket method.

Changed in version 24: When using a Context as a context manager (with zmq.Context()),
or deleting a context without closing it first,
ctx.destroy() is called,
closing any leftover sockets,
instead of ctx.term() which requires sockets to be closed first.

This prevents hangs caused by ctx.term() if sockets are left open,
but means that unclean destruction of contexts
(with sockets left open) is not safe
if sockets are managed in other threads.

Added in version 25: Contexts can now be shadowed by passing another Context.
This helps in creating an async copy of a sync context or vice versa:

ctx = zmq.Context(async_ctx)

Which previously had to be:

ctx = zmq.Context.shadow(async_ctx.underlying)

	
closed

	boolean - whether the context has been terminated.
If True, you can no longer use this Context.

	
destroy(linger: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Close all sockets associated with this context and then terminate
the context.

Warning

destroy involves calling Socket.close(), which is NOT threadsafe.
If there are active sockets in other threads, this must not be called.

	Parameters:

	linger (int [https://docs.python.org/3/library/functions.html#int], optional) – If specified, set LINGER on sockets prior to closing them.

	
get(option: int [https://docs.python.org/3/library/functions.html#int])

	Get the value of a context option.

See the 0MQ API documentation for zmq_ctx_get
for details on specific options.

Added in version libzmq-3.2.

Added in version 13.0.

	Parameters:

	option (int [https://docs.python.org/3/library/functions.html#int]) – The option to get. Available values will depend on your
version of libzmq. Examples include:

zmq.IO_THREADS, zmq.MAX_SOCKETS

	Returns:

	optval – The value of the option as an integer.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
getsockopt(opt: int [https://docs.python.org/3/library/functions.html#int]) → str [https://docs.python.org/3/library/stdtypes.html#str] | bytes [https://docs.python.org/3/library/stdtypes.html#bytes] | int [https://docs.python.org/3/library/functions.html#int]

	get default socket options for new sockets created by this Context

Added in version 13.0.

	
classmethod instance(io_threads: int [https://docs.python.org/3/library/functions.html#int] = 1) → zmq.Context

	Returns a global Context instance.

Most single-process applications have a single, global Context.
Use this method instead of passing around Context instances
throughout your code.

A common pattern for classes that depend on Contexts is to use
a default argument to enable programs with multiple Contexts
but not require the argument for simpler applications:

class MyClass(object):
 def __init__(self, context=None):
 self.context = context or Context.instance()

Changed in version 18.1: When called in a subprocess after forking,
a new global instance is created instead of inheriting
a Context that won’t work from the parent process.

	
set(option: int [https://docs.python.org/3/library/functions.html#int], optval)

	Set a context option.

See the 0MQ API documentation for zmq_ctx_set
for details on specific options.

Added in version libzmq-3.2.

Added in version 13.0.

	Parameters:

	
	option (int [https://docs.python.org/3/library/functions.html#int]) – The option to set. Available values will depend on your
version of libzmq. Examples include:

zmq.IO_THREADS, zmq.MAX_SOCKETS

	optval (int [https://docs.python.org/3/library/functions.html#int]) – The value of the option to set.

	
setsockopt(opt: int [https://docs.python.org/3/library/functions.html#int], value: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	set default socket options for new sockets created by this Context

Added in version 13.0.

	
classmethod shadow(address: int [https://docs.python.org/3/library/functions.html#int] | Context) → zmq.Context

	Shadow an existing libzmq context

address is a zmq.Context or an integer (or FFI pointer)
representing the address of the libzmq context.

Added in version 14.1.

Added in version 25: Support for shadowing zmq.Context objects,
instead of just integer addresses.

	
classmethod shadow_pyczmq(ctx: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → zmq.Context

	Shadow an existing pyczmq context

ctx is the FFI zctx_t * pointer

Added in version 14.1.

	
socket(socket_type: int [https://docs.python.org/3/library/functions.html#int], socket_class: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[zmq.Context, int [https://docs.python.org/3/library/functions.html#int]], zmq.Socket] | None [https://docs.python.org/3/library/constants.html#None] = None, **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → zmq.Socket

	Create a Socket associated with this Context.

	Parameters:

	
	socket_type (int [https://docs.python.org/3/library/functions.html#int]) – The socket type, which can be any of the 0MQ socket types:
REQ, REP, PUB, SUB, PAIR, DEALER, ROUTER, PULL, PUSH, etc.

	socket_class (zmq.Socket) – The socket class to instantiate, if different from the default for this Context.
e.g. for creating an asyncio socket attached to a default Context or vice versa.

Added in version 25.

	kwargs – will be passed to the __init__ method of the socket class.

	
term() → None [https://docs.python.org/3/library/constants.html#None]

	Close or terminate the context.

Context termination is performed in the following steps:

	Any blocking operations currently in progress on sockets open within context shall
raise zmq.ContextTerminated.
With the exception of socket.close(), any further operations on sockets open within this context
shall raise zmq.ContextTerminated.

	
	After interrupting all blocking calls, term shall block until the following conditions are satisfied:
	
	All sockets open within context have been closed.

	For each socket within context, all messages sent on the socket have either been
physically transferred to a network peer,
or the socket’s linger period set with the zmq.LINGER socket option has expired.

For further details regarding socket linger behaviour refer to libzmq documentation for ZMQ_LINGER.

This can be called to close the context by hand. If this is not called,
the context will automatically be closed when it is garbage collected,
in which case you may see a ResourceWarning about the unclosed context.

	
underlying

	The address of the underlying libzmq context

Socket

	
class zmq.Socket(ctx_or_socket: Context, socket_type: int [https://docs.python.org/3/library/functions.html#int], *, copy_threshold: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None)

	
class zmq.Socket(*, shadow: Socket | int [https://docs.python.org/3/library/functions.html#int], copy_threshold: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None)

	
class zmq.Socket(ctx_or_socket: Socket)

	The ZMQ socket object

To create a Socket, first create a Context:

ctx = zmq.Context.instance()

then call ctx.socket(socket_type):

s = ctx.socket(zmq.ROUTER)

Added in version 25: Sockets can now be shadowed by passing another Socket.
This helps in creating an async copy of a sync socket or vice versa:

s = zmq.Socket(async_socket)

Which previously had to be:

s = zmq.Socket.shadow(async_socket.underlying)

	
closed

	boolean - whether the socket has been closed.
If True, you can no longer use this Socket.

	
copy_threshold

	integer - size (in bytes) below which messages
should always be copied.
Zero-copy support has nontrivial overhead
due to the need to coordinate garbage collection
with the libzmq IO thread,
so sending small messages (typically < 10s of kB)
with copy=False is often more expensive
than with copy=True.
The initial default value is 65536 (64kB),
a reasonable default based on testing.

Defaults to zmq.COPY_THRESHOLD on socket construction.
Setting zmq.COPY_THRESHOLD will define the default
value for any subsequently created sockets.

Added in version 17.

	
bind(addr)

	Bind the socket to an address.

This causes the socket to listen on a network port. Sockets on the
other side of this connection will use Socket.connect(addr) to
connect to this socket.

Returns a context manager which will call unbind on exit.

Added in version 20.0: Can be used as a context manager.

Added in version 26.0: binding to port 0 can be used as a context manager
for binding to a random port.
The URL can be retrieved as socket.last_endpoint.

	Parameters:

	addr (str [https://docs.python.org/3/library/stdtypes.html#str]) – The address string. This has the form ‘protocol://interface:port’,
for example ‘tcp://127.0.0.1:5555’. Protocols supported include
tcp, udp, pgm, epgm, inproc and ipc. If the address is unicode, it is
encoded to utf-8 first.

	
bind_to_random_port(addr: str [https://docs.python.org/3/library/stdtypes.html#str], min_port: int [https://docs.python.org/3/library/functions.html#int] = 49152, max_port: int [https://docs.python.org/3/library/functions.html#int] = 65536, max_tries: int [https://docs.python.org/3/library/functions.html#int] = 100) → int [https://docs.python.org/3/library/functions.html#int]

	Bind this socket to a random port in a range.

If the port range is unspecified, the system will choose the port.

	Parameters:

	
	addr (str [https://docs.python.org/3/library/stdtypes.html#str]) – The address string without the port to pass to Socket.bind().

	min_port (int [https://docs.python.org/3/library/functions.html#int], optional) – The minimum port in the range of ports to try (inclusive).

	max_port (int [https://docs.python.org/3/library/functions.html#int], optional) – The maximum port in the range of ports to try (exclusive).

	max_tries (int [https://docs.python.org/3/library/functions.html#int], optional) – The maximum number of bind attempts to make.

	Returns:

	port – The port the socket was bound to.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	Raises:

	ZMQBindError – if max_tries reached before successful bind

	
close(linger=None) → None [https://docs.python.org/3/library/constants.html#None]

	Close the socket.

If linger is specified, LINGER sockopt will be set prior to closing.

Note: closing a zmq Socket may not close the underlying sockets
if there are undelivered messages.
Only after all messages are delivered or discarded by reaching the socket’s LINGER timeout
(default: forever)
will the underlying sockets be closed.

This can be called to close the socket by hand. If this is not
called, the socket will automatically be closed when it is
garbage collected,
in which case you may see a ResourceWarning about the unclosed socket.

	
connect(addr)

	Connect to a remote 0MQ socket.

Returns a context manager which will call disconnect on exit.

Added in version 20.0: Can be used as a context manager.

	Parameters:

	addr (str [https://docs.python.org/3/library/stdtypes.html#str]) – The address string. This has the form ‘protocol://interface:port’,
for example ‘tcp://127.0.0.1:5555’. Protocols supported are
tcp, udp, pgm, inproc and ipc. If the address is unicode, it is
encoded to utf-8 first.

	
disable_monitor() → None [https://docs.python.org/3/library/constants.html#None]

	Shutdown the PAIR socket (created using get_monitor_socket)
that is serving socket events.

Added in version 14.4.

	
disconnect(addr)

	Disconnect from a remote 0MQ socket (undoes a call to connect).

Added in version libzmq-3.2.

Added in version 13.0.

	Parameters:

	addr (str [https://docs.python.org/3/library/stdtypes.html#str]) – The address string. This has the form ‘protocol://interface:port’,
for example ‘tcp://127.0.0.1:5555’. Protocols supported are
tcp, udp, pgm, inproc and ipc. If the address is unicode, it is
encoded to utf-8 first.

	
fileno() → int [https://docs.python.org/3/library/functions.html#int]

	Return edge-triggered file descriptor for this socket.

This is a read-only edge-triggered file descriptor for both read and write events on this socket.
It is important that all available events be consumed when an event is detected,
otherwise the read event will not trigger again.

Added in version 17.0.

	
get(option: int [https://docs.python.org/3/library/functions.html#int])

	Get the value of a socket option.

See the 0MQ API documentation for details on specific options.

	Parameters:

	option (int [https://docs.python.org/3/library/functions.html#int]) – The option to get. Available values will depend on your
version of libzmq. Examples include:

zmq.IDENTITY, HWM, LINGER, FD, EVENTS

	Returns:

	optval – The value of the option as a bytestring or int.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int] or bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	
get_hwm() → int [https://docs.python.org/3/library/functions.html#int]

	Get the High Water Mark.

On libzmq ≥ 3, this gets SNDHWM if available, otherwise RCVHWM

	
get_monitor_socket(events: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None, addr: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None) → zmq.Socket

	Return a connected PAIR socket ready to receive the event notifications.

Added in version libzmq-4.0.

Added in version 14.0.

	Parameters:

	
	events (int [https://docs.python.org/3/library/functions.html#int]) – default: zmq.EVENT_ALL
The bitmask defining which events are wanted.

	addr (str [https://docs.python.org/3/library/stdtypes.html#str]) – The optional endpoint for the monitoring sockets.

	Returns:

	socket – The PAIR socket, connected and ready to receive messages.

	Return type:

	zmq.Socket

	
get_string(option: int [https://docs.python.org/3/library/functions.html#int], encoding='utf-8') → str [https://docs.python.org/3/library/stdtypes.html#str]

	Get the value of a socket option.

See the 0MQ documentation for details on specific options.

	Parameters:

	option (int [https://docs.python.org/3/library/functions.html#int]) – The option to retrieve.

	Returns:

	optval – The value of the option as a unicode string.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
getsockopt(option: int [https://docs.python.org/3/library/functions.html#int])

	Get the value of a socket option.

See the 0MQ API documentation for details on specific options.

	Parameters:

	option (int [https://docs.python.org/3/library/functions.html#int]) – The option to get. Available values will depend on your
version of libzmq. Examples include:

zmq.IDENTITY, HWM, LINGER, FD, EVENTS

	Returns:

	optval – The value of the option as a bytestring or int.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int] or bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	
getsockopt_string(option: int [https://docs.python.org/3/library/functions.html#int], encoding='utf-8') → str [https://docs.python.org/3/library/stdtypes.html#str]

	Get the value of a socket option.

See the 0MQ documentation for details on specific options.

	Parameters:

	option (int [https://docs.python.org/3/library/functions.html#int]) – The option to retrieve.

	Returns:

	optval – The value of the option as a unicode string.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property hwm: int [https://docs.python.org/3/library/functions.html#int]

	Property for High Water Mark.

Setting hwm sets both SNDHWM and RCVHWM as appropriate.
It gets SNDHWM if available, otherwise RCVHWM.

	
join(group)

	Join a RADIO-DISH group

Only for DISH sockets.

libzmq and pyzmq must have been built with ZMQ_BUILD_DRAFT_API

Added in version 17.

	
leave(group)

	Leave a RADIO-DISH group

Only for DISH sockets.

libzmq and pyzmq must have been built with ZMQ_BUILD_DRAFT_API

Added in version 17.

	
monitor(addr, events: int [https://docs.python.org/3/library/functions.html#int] = 65535)

	Start publishing socket events on inproc.
See libzmq docs for zmq_monitor for details.

While this function is available from libzmq 3.2,
pyzmq cannot parse monitor messages from libzmq prior to 4.0.

	Parameters:

	
	addr (str [https://docs.python.org/3/library/stdtypes.html#str]) – The inproc url used for monitoring. Passing None as
the addr will cause an existing socket monitor to be
deregistered.

	events (int [https://docs.python.org/3/library/functions.html#int]) – default: zmq.EVENT_ALL
The zmq event bitmask for which events will be sent to the monitor.

	
poll(timeout: int | None = None, flags: int = <PollEvent.POLLIN: 1>) → int [https://docs.python.org/3/library/functions.html#int]

	Poll the socket for events.

See Poller to wait for multiple sockets at once.

	Parameters:

	
	timeout (int [https://docs.python.org/3/library/functions.html#int]) – The timeout (in milliseconds) to wait for an event. If unspecified
(or specified None), will wait forever for an event.

	flags (int [https://docs.python.org/3/library/functions.html#int]) – default: POLLIN.
POLLIN, POLLOUT, or POLLIN|POLLOUT. The event flags to poll for.

	Returns:

	event_mask – The poll event mask (POLLIN, POLLOUT),
0 if the timeout was reached without an event.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
recv(flags=0, copy: bool [https://docs.python.org/3/library/functions.html#bool] = True, track: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Receive a message.

With flags=NOBLOCK, this raises ZMQError if no messages have
arrived; otherwise, this waits until a message arrives.
See Poller for more general non-blocking I/O.

	Parameters:

	
	flags (int [https://docs.python.org/3/library/functions.html#int]) – 0 or NOBLOCK.

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – Should the message be received in a copying or non-copying manner?
If False a Frame object is returned, if True a string copy of
message is returned.

	track (bool [https://docs.python.org/3/library/functions.html#bool]) – Should the message be tracked for notification that ZMQ has
finished with it? (ignored if copy=True)

	Returns:

	msg – The received message frame. If copy is False, then it will be a Frame,
otherwise it will be bytes.

	Return type:

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes] or Frame

	Raises:

	ZMQError – for any of the reasons zmq_msg_recv might fail (including if
 NOBLOCK is set and no new messages have arrived).

	
recv_json(flags: int [https://docs.python.org/3/library/functions.html#int] = 0, **kwargs) → list [https://docs.python.org/3/library/stdtypes.html#list] | str [https://docs.python.org/3/library/stdtypes.html#str] | int [https://docs.python.org/3/library/functions.html#int] | float [https://docs.python.org/3/library/functions.html#float] | dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Receive a Python object as a message using json to serialize.

Keyword arguments are passed on to json.loads

	Parameters:

	flags (int [https://docs.python.org/3/library/functions.html#int]) – Any valid flags for Socket.recv().

	Returns:

	obj – The Python object that arrives as a message.

	Return type:

	Python object

	Raises:

	ZMQError – for any of the reasons recv() might fail

	
recv_multipart(flags: int [https://docs.python.org/3/library/functions.html#int] = 0, *, copy: Literal [https://docs.python.org/3/library/typing.html#typing.Literal][True], track: bool [https://docs.python.org/3/library/functions.html#bool] = False) → list [https://docs.python.org/3/library/stdtypes.html#list][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]

	
recv_multipart(flags: int [https://docs.python.org/3/library/functions.html#int] = 0, *, copy: Literal [https://docs.python.org/3/library/typing.html#typing.Literal][False], track: bool [https://docs.python.org/3/library/functions.html#bool] = False) → list [https://docs.python.org/3/library/stdtypes.html#list][Frame]

	
recv_multipart(flags: int [https://docs.python.org/3/library/functions.html#int] = 0, *, track: bool [https://docs.python.org/3/library/functions.html#bool] = False) → list [https://docs.python.org/3/library/stdtypes.html#list][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]

	
recv_multipart(flags: int [https://docs.python.org/3/library/functions.html#int] = 0, copy: bool [https://docs.python.org/3/library/functions.html#bool] = True, track: bool [https://docs.python.org/3/library/functions.html#bool] = False) → list [https://docs.python.org/3/library/stdtypes.html#list][Frame] | list [https://docs.python.org/3/library/stdtypes.html#list][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]

	Receive a multipart message as a list of bytes or Frame objects

	Parameters:

	
	flags (int [https://docs.python.org/3/library/functions.html#int], optional) – Any valid flags for Socket.recv().

	copy (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Should the message frame(s) be received in a copying or non-copying manner?
If False a Frame object is returned for each part, if True a copy of
the bytes is made for each frame.

	track (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Should the message frame(s) be tracked for notification that ZMQ has
finished with it? (ignored if copy=True)

	Returns:

	msg_parts – A list of frames in the multipart message; either Frames or bytes,
depending on copy.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	Raises:

	ZMQError – for any of the reasons recv() might fail

	
recv_pyobj(flags: int [https://docs.python.org/3/library/functions.html#int] = 0) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Receive a Python object as a message using pickle to serialize.

	Parameters:

	flags (int [https://docs.python.org/3/library/functions.html#int]) – Any valid flags for Socket.recv().

	Returns:

	obj – The Python object that arrives as a message.

	Return type:

	Python object

	Raises:

	ZMQError – for any of the reasons recv() might fail

	
recv_serialized(deserialize, flags=0, copy=True)

	Receive a message with a custom deserialization function.

Added in version 17.

	Parameters:

	
	deserialize (callable) – The deserialization function to use.
deserialize will be called with one argument: the list of frames
returned by recv_multipart() and can return any object.

	flags (int [https://docs.python.org/3/library/functions.html#int], optional) – Any valid flags for Socket.recv().

	copy (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to recv bytes or Frame objects.

	Returns:

	obj – The object returned by the deserialization function.

	Return type:

	object [https://docs.python.org/3/library/functions.html#object]

	Raises:

	ZMQError – for any of the reasons recv() might fail

	
recv_string(flags: int [https://docs.python.org/3/library/functions.html#int] = 0, encoding: str [https://docs.python.org/3/library/stdtypes.html#str] = 'utf-8') → str [https://docs.python.org/3/library/stdtypes.html#str]

	Receive a unicode string, as sent by send_string.

	Parameters:

	
	flags (int [https://docs.python.org/3/library/functions.html#int]) – Any valid flags for Socket.recv().

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – The encoding to be used

	Returns:

	s – The Python unicode string that arrives as encoded bytes.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises:

	ZMQError – for any of the reasons Socket.recv() might fail

	
send(data: Any [https://docs.python.org/3/library/typing.html#typing.Any], flags: int [https://docs.python.org/3/library/functions.html#int] = 0, copy: bool [https://docs.python.org/3/library/functions.html#bool] = True, *, track: Literal [https://docs.python.org/3/library/typing.html#typing.Literal][True], routing_id: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None, group: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None) → MessageTracker

	
send(data: Any [https://docs.python.org/3/library/typing.html#typing.Any], flags: int [https://docs.python.org/3/library/functions.html#int] = 0, copy: bool [https://docs.python.org/3/library/functions.html#bool] = True, *, track: Literal [https://docs.python.org/3/library/typing.html#typing.Literal][False], routing_id: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None, group: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None) → None [https://docs.python.org/3/library/constants.html#None]

	
send(data: Any [https://docs.python.org/3/library/typing.html#typing.Any], flags: int [https://docs.python.org/3/library/functions.html#int] = 0, *, copy: bool [https://docs.python.org/3/library/functions.html#bool] = True, routing_id: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None, group: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None) → None [https://docs.python.org/3/library/constants.html#None]

	
send(data: Any [https://docs.python.org/3/library/typing.html#typing.Any], flags: int [https://docs.python.org/3/library/functions.html#int] = 0, copy: bool [https://docs.python.org/3/library/functions.html#bool] = True, track: bool [https://docs.python.org/3/library/functions.html#bool] = False, routing_id: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None, group: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None) → MessageTracker | None [https://docs.python.org/3/library/constants.html#None]

	Send a single zmq message frame on this socket.

This queues the message to be sent by the IO thread at a later time.

With flags=NOBLOCK, this raises ZMQError if the queue is full;
otherwise, this waits until space is available.
See Poller for more general non-blocking I/O.

	Parameters:

	
	data (bytes [https://docs.python.org/3/library/stdtypes.html#bytes], Frame, memoryview [https://docs.python.org/3/library/stdtypes.html#memoryview]) – The content of the message. This can be any object that provides
the Python buffer API (i.e. memoryview(data) can be called).

	flags (int [https://docs.python.org/3/library/functions.html#int]) – 0, NOBLOCK, SNDMORE, or NOBLOCK|SNDMORE.

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – Should the message be sent in a copying or non-copying manner.

	track (bool [https://docs.python.org/3/library/functions.html#bool]) – Should the message be tracked for notification that ZMQ has
finished with it? (ignored if copy=True)

	routing_id (int [https://docs.python.org/3/library/functions.html#int]) – For use with SERVER sockets

	group (str [https://docs.python.org/3/library/stdtypes.html#str]) – For use with RADIO sockets

	Returns:

	
	None (if copy or not track) – None if message was sent, raises an exception otherwise.

	MessageTracker (if track and not copy) – a MessageTracker object, whose done property will
be False until the send is completed.

	Raises:

	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If a unicode object is passed

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If track=True, but an untracked Frame is passed.

	ZMQError – If the send does not succeed for any reason (including
 if NOBLOCK is set and the outgoing queue is full).

Changed in version 17.0: DRAFT support for routing_id and group arguments.

	
send_json(obj: Any [https://docs.python.org/3/library/typing.html#typing.Any], flags: int [https://docs.python.org/3/library/functions.html#int] = 0, **kwargs) → None [https://docs.python.org/3/library/constants.html#None]

	Send a Python object as a message using json to serialize.

Keyword arguments are passed on to json.dumps

	Parameters:

	
	obj (Python object) – The Python object to send

	flags (int [https://docs.python.org/3/library/functions.html#int]) – Any valid flags for Socket.send()

	
send_multipart(msg_parts: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence], flags: int [https://docs.python.org/3/library/functions.html#int] = 0, copy: bool [https://docs.python.org/3/library/functions.html#bool] = True, track: bool [https://docs.python.org/3/library/functions.html#bool] = False, **kwargs)

	Send a sequence of buffers as a multipart message.

The zmq.SNDMORE flag is added to all msg parts before the last.

	Parameters:

	
	msg_parts (iterable) – A sequence of objects to send as a multipart message. Each element
can be any sendable object (Frame, bytes, buffer-providers)

	flags (int [https://docs.python.org/3/library/functions.html#int], optional) – Any valid flags for Socket.send().
SNDMORE is added automatically for frames before the last.

	copy (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Should the frame(s) be sent in a copying or non-copying manner.
If copy=False, frames smaller than self.copy_threshold bytes
will be copied anyway.

	track (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Should the frame(s) be tracked for notification that ZMQ has
finished with it (ignored if copy=True).

	Returns:

	
	None (if copy or not track)

	MessageTracker (if track and not copy) – a MessageTracker object, whose done property will
be False until the last send is completed.

	
send_pyobj(obj: Any [https://docs.python.org/3/library/typing.html#typing.Any], flags: int [https://docs.python.org/3/library/functions.html#int] = 0, protocol: int [https://docs.python.org/3/library/functions.html#int] = 4, **kwargs) → Frame | None [https://docs.python.org/3/library/constants.html#None]

	Send a Python object as a message using pickle to serialize.

	Parameters:

	
	obj (Python object) – The Python object to send.

	flags (int [https://docs.python.org/3/library/functions.html#int]) – Any valid flags for Socket.send().

	protocol (int [https://docs.python.org/3/library/functions.html#int]) – The pickle protocol number to use. The default is pickle.DEFAULT_PROTOCOL
where defined, and pickle.HIGHEST_PROTOCOL elsewhere.

	
send_serialized(msg, serialize, flags=0, copy=True, **kwargs)

	Send a message with a custom serialization function.

Added in version 17.

	Parameters:

	
	msg (The message to be sent. Can be any object serializable by serialize.)

	serialize (callable) – The serialization function to use.
serialize(msg) should return an iterable of sendable message frames
(e.g. bytes objects), which will be passed to send_multipart.

	flags (int [https://docs.python.org/3/library/functions.html#int], optional) – Any valid flags for Socket.send().

	copy (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to copy the frames.

	
send_string(u: str [https://docs.python.org/3/library/stdtypes.html#str], flags: int [https://docs.python.org/3/library/functions.html#int] = 0, copy: bool [https://docs.python.org/3/library/functions.html#bool] = True, encoding: str [https://docs.python.org/3/library/stdtypes.html#str] = 'utf-8', **kwargs) → Frame | None [https://docs.python.org/3/library/constants.html#None]

	Send a Python unicode string as a message with an encoding.

0MQ communicates with raw bytes, so you must encode/decode
text (str) around 0MQ.

	Parameters:

	
	u (str [https://docs.python.org/3/library/stdtypes.html#str]) – The unicode string to send.

	flags (int [https://docs.python.org/3/library/functions.html#int], optional) – Any valid flags for Socket.send().

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – The encoding to be used

	
set(option: int [https://docs.python.org/3/library/functions.html#int], optval)

	Set socket options.

See the 0MQ API documentation for details on specific options.

	Parameters:

	
	option (int [https://docs.python.org/3/library/functions.html#int]) – The option to set. Available values will depend on your
version of libzmq. Examples include:

zmq.SUBSCRIBE, UNSUBSCRIBE, IDENTITY, HWM, LINGER, FD

	optval (int [https://docs.python.org/3/library/functions.html#int] or bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The value of the option to set.

Notes

Warning

All options other than zmq.SUBSCRIBE, zmq.UNSUBSCRIBE and
zmq.LINGER only take effect for subsequent socket bind/connects.

	
set_hwm(value: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Set the High Water Mark.

On libzmq ≥ 3, this sets both SNDHWM and RCVHWM

Warning

New values only take effect for subsequent socket
bind/connects.

	
set_string(option: int [https://docs.python.org/3/library/functions.html#int], optval: str [https://docs.python.org/3/library/stdtypes.html#str], encoding='utf-8') → None [https://docs.python.org/3/library/constants.html#None]

	Set socket options with a unicode object.

This is simply a wrapper for setsockopt to protect from encoding ambiguity.

See the 0MQ documentation for details on specific options.

	Parameters:

	
	option (int [https://docs.python.org/3/library/functions.html#int]) – The name of the option to set. Can be any of: SUBSCRIBE,
UNSUBSCRIBE, IDENTITY

	optval (str [https://docs.python.org/3/library/stdtypes.html#str]) – The value of the option to set.

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – The encoding to be used, default is utf8

	
setsockopt(option: int [https://docs.python.org/3/library/functions.html#int], optval)

	Set socket options.

See the 0MQ API documentation for details on specific options.

	Parameters:

	
	option (int [https://docs.python.org/3/library/functions.html#int]) – The option to set. Available values will depend on your
version of libzmq. Examples include:

zmq.SUBSCRIBE, UNSUBSCRIBE, IDENTITY, HWM, LINGER, FD

	optval (int [https://docs.python.org/3/library/functions.html#int] or bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The value of the option to set.

Notes

Warning

All options other than zmq.SUBSCRIBE, zmq.UNSUBSCRIBE and
zmq.LINGER only take effect for subsequent socket bind/connects.

	
setsockopt_string(option: int [https://docs.python.org/3/library/functions.html#int], optval: str [https://docs.python.org/3/library/stdtypes.html#str], encoding='utf-8') → None [https://docs.python.org/3/library/constants.html#None]

	Set socket options with a unicode object.

This is simply a wrapper for setsockopt to protect from encoding ambiguity.

See the 0MQ documentation for details on specific options.

	Parameters:

	
	option (int [https://docs.python.org/3/library/functions.html#int]) – The name of the option to set. Can be any of: SUBSCRIBE,
UNSUBSCRIBE, IDENTITY

	optval (str [https://docs.python.org/3/library/stdtypes.html#str]) – The value of the option to set.

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – The encoding to be used, default is utf8

	
classmethod shadow(address: int [https://docs.python.org/3/library/functions.html#int] | Socket) → zmq.Socket

	Shadow an existing libzmq socket

address is a zmq.Socket or an integer (or FFI pointer)
representing the address of the libzmq socket.

Added in version 14.1.

Added in version 25: Support for shadowing zmq.Socket objects,
instead of just integer addresses.

	
subscribe(topic: str [https://docs.python.org/3/library/stdtypes.html#str] | bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) → None [https://docs.python.org/3/library/constants.html#None]

	Subscribe to a topic

Only for SUB sockets.

Added in version 15.3.

	
unbind(addr)

	Unbind from an address (undoes a call to bind).

Added in version libzmq-3.2.

Added in version 13.0.

	Parameters:

	addr (str [https://docs.python.org/3/library/stdtypes.html#str]) – The address string. This has the form ‘protocol://interface:port’,
for example ‘tcp://127.0.0.1:5555’. Protocols supported are
tcp, udp, pgm, inproc and ipc. If the address is unicode, it is
encoded to utf-8 first.

	
underlying

	The address of the underlying libzmq socket

	
unsubscribe(topic: str [https://docs.python.org/3/library/stdtypes.html#str] | bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) → None [https://docs.python.org/3/library/constants.html#None]

	Unsubscribe from a topic

Only for SUB sockets.

Added in version 15.3.

Frame

	
class zmq.Frame

	A zmq message Frame class for non-copying send/recvs and access to message properties.

A zmq.Frame wraps an underlying zmq_msg_t.

Message properties can be accessed by treating a Frame like a dictionary (frame["User-Id"]).

Added in version 14.4,: libzmq 4

Frames created by recv(copy=False) can be used to access message properties and attributes,
such as the CURVE User-Id.

For example:

frames = socket.recv_multipart(copy=False)
user_id = frames[0]["User-Id"]

This class is used if you want to do non-copying send and recvs.
When you pass a chunk of bytes to this class, e.g. Frame(buf), the
ref-count of buf is increased by two: once because the Frame saves buf as
an instance attribute and another because a ZMQ message is created that
points to the buffer of buf. This second ref-count increase makes sure
that buf lives until all messages that use it have been sent.
Once 0MQ sends all the messages and it doesn’t need the buffer of buf,
0MQ will call Py_DECREF(s).

	Parameters:

	
	data (object [https://docs.python.org/3/library/functions.html#object], optional) – any object that provides the buffer interface will be used to
construct the 0MQ message data.

	track (bool [https://docs.python.org/3/library/functions.html#bool]) – whether a MessageTracker should be created to track this object.
Tracking a message has a cost at creation, because it creates a threadsafe
Event object.

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – default: use copy_threshold
Whether to create a copy of the data to pass to libzmq
or share the memory with libzmq.
If unspecified, copy_threshold is used.

	copy_threshold (int [https://docs.python.org/3/library/functions.html#int]) – default: zmq.COPY_THRESHOLD
If copy is unspecified, messages smaller than this many bytes
will be copied and messages larger than this will be shared with libzmq.

	
buffer

	A memoryview of the message contents.

	
bytes

	The message content as a Python bytes object.

The first time this property is accessed, a copy of the message
contents is made. From then on that same copy of the message is
returned.

	
get(option)

	Get a Frame option or property.

See the 0MQ API documentation for zmq_msg_get and zmq_msg_gets
for details on specific options.

Added in version libzmq-3.2.

Added in version 13.0.

Changed in version 14.3: add support for zmq_msg_gets (requires libzmq-4.1)
All message properties are strings.

Changed in version 17.0: Added support for routing_id and group.
Only available if draft API is enabled
with libzmq >= 4.2.

	
property group

	The RADIO-DISH group of the message.

Requires libzmq >= 4.2 and pyzmq built with draft APIs enabled.

Added in version 17.

	
property routing_id

	The CLIENT-SERVER routing id of the message.

Requires libzmq >= 4.2 and pyzmq built with draft APIs enabled.

Added in version 17.

	
set(option, value)

	Set a Frame option.

See the 0MQ API documentation for zmq_msg_set
for details on specific options.

Added in version libzmq-3.2.

Added in version 13.0.

Changed in version 17.0: Added support for routing_id and group.
Only available if draft API is enabled
with libzmq >= 4.2.

MessageTracker

	
class zmq.MessageTracker(*towatch: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][MessageTracker | Event | Frame])

	A class for tracking if 0MQ is done using one or more messages.

When you send a 0MQ message, it is not sent immediately. The 0MQ IO thread
sends the message at some later time. Often you want to know when 0MQ has
actually sent the message though. This is complicated by the fact that
a single 0MQ message can be sent multiple times using different sockets.
This class allows you to track all of the 0MQ usages of a message.

	Parameters:

	towatch (Event, MessageTracker, zmq.Frame) – This objects to track. This class can track the low-level
Events used by the Message class, other MessageTrackers or
actual Messages.

	
property done

	Is 0MQ completely done with the message(s) being tracked?

	
wait(timeout: float [https://docs.python.org/3/library/functions.html#float] | int [https://docs.python.org/3/library/functions.html#int] = -1)

	Wait for 0MQ to be done with the message or until timeout.

	Parameters:

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – default: -1, which means wait forever.
Maximum time in (s) to wait before raising NotDone.

	Returns:

	if done before timeout

	Return type:

	None

	Raises:

	NotDone – if timeout reached before I am done.

Polling

Poller

	
class zmq.Poller

	A stateful poll interface that mirrors Python’s built-in poll.

	
modify(socket, flags=<PollEvent.POLLIN|POLLOUT: 3>)

	Modify the flags for an already registered 0MQ socket or native fd.

	
poll(timeout: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None) → list [https://docs.python.org/3/library/stdtypes.html#list][tuple [https://docs.python.org/3/library/stdtypes.html#tuple][Any [https://docs.python.org/3/library/typing.html#typing.Any], int [https://docs.python.org/3/library/functions.html#int]]]

	Poll the registered 0MQ or native fds for I/O.

If there are currently events ready to be processed, this function will return immediately.
Otherwise, this function will return as soon the first event is available or after timeout
milliseconds have elapsed.

	Parameters:

	timeout (int [https://docs.python.org/3/library/functions.html#int]) – The timeout in milliseconds. If None, no timeout (infinite). This
is in milliseconds to be compatible with select.poll().

	Returns:

	events – The list of events that are ready to be processed.
This is a list of tuples of the form (socket, event_mask), where the 0MQ Socket
or integer fd is the first element, and the poll event mask (POLLIN, POLLOUT) is the second.
It is common to call events = dict(poller.poll()),
which turns the list of tuples into a mapping of socket : event_mask.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
register(socket, flags=POLLIN | POLLOUT)

	Register a 0MQ socket or native fd for I/O monitoring.

register(s,0) is equivalent to unregister(s).

	Parameters:

	
	socket (zmq.Socket or native socket) – A zmq.Socket or any Python object having a fileno()
method that returns a valid file descriptor.

	flags (int [https://docs.python.org/3/library/functions.html#int]) – The events to watch for. Can be POLLIN, POLLOUT or POLLIN|POLLOUT.
If flags=0, socket will be unregistered.

	
unregister(socket: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	Remove a 0MQ socket or native fd for I/O monitoring.

	Parameters:

	socket (Socket) – The socket instance to stop polling.

	
zmq.select(rlist, wlist, xlist, timeout=None)

	Return the result of poll as a lists of sockets ready for r/w/exception.

This has the same interface as Python’s built-in select.select() function.

	Parameters:

	
	timeout (float [https://docs.python.org/3/library/functions.html#float], optional) – The timeout in seconds. If None, no timeout (infinite). This is in seconds to be
compatible with select.select().

	rlist (list [https://docs.python.org/3/library/stdtypes.html#list]) – sockets/FDs to be polled for read events

	wlist (list [https://docs.python.org/3/library/stdtypes.html#list]) – sockets/FDs to be polled for write events

	xlist (list [https://docs.python.org/3/library/stdtypes.html#list]) – sockets/FDs to be polled for error events

	Returns:

	
	rlist (list) – list of sockets or FDs that are readable

	wlist (list) – list of sockets or FDs that are writable

	xlist (list) – list of sockets or FDs that had error events (rare)

Constants

All libzmq constants are available as top-level attributes
(zmq.PUSH, etc.),
as well as via enums (zmq.SocketType.PUSH, etc.).

Changed in version 23: constants for unavailable socket types
or draft features will always be defined in pyzmq,
whether the features themselves are available or not.

Added in version 23: Each category of zmq constant is now available as an IntEnum.

	
zmq.COPY_THRESHOLD

	The global default “small message” threshold for copying when copy=False.
Copying has a thread-coordination cost, so zero-copy only has a benefit for sufficiently large messages.

	
enum zmq.SocketType(value)

	zmq socket types

Added in version 23.

	Member Type:

	int [https://docs.python.org/3/library/functions.html#int]

Valid values are as follows:

	
PAIR = <SocketType.PAIR: 0>

	

	
PUB = <SocketType.PUB: 1>

	

	
SUB = <SocketType.SUB: 2>

	

	
REQ = <SocketType.REQ: 3>

	

	
REP = <SocketType.REP: 4>

	

	
DEALER = <SocketType.DEALER: 5>

	

	
ROUTER = <SocketType.ROUTER: 6>

	

	
PULL = <SocketType.PULL: 7>

	

	
PUSH = <SocketType.PUSH: 8>

	

	
XPUB = <SocketType.XPUB: 9>

	

	
XSUB = <SocketType.XSUB: 10>

	

	
STREAM = <SocketType.STREAM: 11>

	

	
SERVER = <SocketType.SERVER: 12>

	

	
CLIENT = <SocketType.CLIENT: 13>

	

	
RADIO = <SocketType.RADIO: 14>

	

	
DISH = <SocketType.DISH: 15>

	

	
GATHER = <SocketType.GATHER: 16>

	

	
SCATTER = <SocketType.SCATTER: 17>

	

	
DGRAM = <SocketType.DGRAM: 18>

	

	
PEER = <SocketType.PEER: 19>

	

	
CHANNEL = <SocketType.CHANNEL: 20>

	

	
enum zmq.SocketOption(value)

	Options for Socket.get/set

Added in version 23.

	Member Type:

	int [https://docs.python.org/3/library/functions.html#int]

Valid values are as follows:

	
HWM = <SocketOption.HWM: 1>

	

	
AFFINITY = <SocketOption.AFFINITY: 4>

	

	
ROUTING_ID = <SocketOption.ROUTING_ID: 5>

	

	
SUBSCRIBE = <SocketOption.SUBSCRIBE: 6>

	

	
UNSUBSCRIBE = <SocketOption.UNSUBSCRIBE: 7>

	

	
RATE = <SocketOption.RATE: 8>

	

	
RECOVERY_IVL = <SocketOption.RECOVERY_IVL: 9>

	

	
SNDBUF = <SocketOption.SNDBUF: 11>

	

	
RCVBUF = <SocketOption.RCVBUF: 12>

	

	
RCVMORE = <SocketOption.RCVMORE: 13>

	

	
FD = <SocketOption.FD: 14>

	

	
EVENTS = <SocketOption.EVENTS: 15>

	

	
TYPE = <SocketOption.TYPE: 16>

	

	
LINGER = <SocketOption.LINGER: 17>

	

	
RECONNECT_IVL = <SocketOption.RECONNECT_IVL: 18>

	

	
BACKLOG = <SocketOption.BACKLOG: 19>

	

	
RECONNECT_IVL_MAX = <SocketOption.RECONNECT_IVL_MAX: 21>

	

	
MAXMSGSIZE = <SocketOption.MAXMSGSIZE: 22>

	

	
SNDHWM = <SocketOption.SNDHWM: 23>

	

	
RCVHWM = <SocketOption.RCVHWM: 24>

	

	
MULTICAST_HOPS = <SocketOption.MULTICAST_HOPS: 25>

	

	
RCVTIMEO = <SocketOption.RCVTIMEO: 27>

	

	
SNDTIMEO = <SocketOption.SNDTIMEO: 28>

	

	
LAST_ENDPOINT = <SocketOption.LAST_ENDPOINT: 32>

	

	
ROUTER_MANDATORY = <SocketOption.ROUTER_MANDATORY: 33>

	

	
TCP_KEEPALIVE = <SocketOption.TCP_KEEPALIVE: 34>

	

	
TCP_KEEPALIVE_CNT = <SocketOption.TCP_KEEPALIVE_CNT: 35>

	

	
TCP_KEEPALIVE_IDLE = <SocketOption.TCP_KEEPALIVE_IDLE: 36>

	

	
TCP_KEEPALIVE_INTVL = <SocketOption.TCP_KEEPALIVE_INTVL: 37>

	

	
IMMEDIATE = <SocketOption.IMMEDIATE: 39>

	

	
XPUB_VERBOSE = <SocketOption.XPUB_VERBOSE: 40>

	

	
ROUTER_RAW = <SocketOption.ROUTER_RAW: 41>

	

	
IPV6 = <SocketOption.IPV6: 42>

	

	
MECHANISM = <SocketOption.MECHANISM: 43>

	

	
PLAIN_SERVER = <SocketOption.PLAIN_SERVER: 44>

	

	
PLAIN_USERNAME = <SocketOption.PLAIN_USERNAME: 45>

	

	
PLAIN_PASSWORD = <SocketOption.PLAIN_PASSWORD: 46>

	

	
CURVE_SERVER = <SocketOption.CURVE_SERVER: 47>

	

	
CURVE_PUBLICKEY = <SocketOption.CURVE_PUBLICKEY: 48>

	

	
CURVE_SECRETKEY = <SocketOption.CURVE_SECRETKEY: 49>

	

	
CURVE_SERVERKEY = <SocketOption.CURVE_SERVERKEY: 50>

	

	
PROBE_ROUTER = <SocketOption.PROBE_ROUTER: 51>

	

	
REQ_CORRELATE = <SocketOption.REQ_CORRELATE: 52>

	

	
REQ_RELAXED = <SocketOption.REQ_RELAXED: 53>

	

	
CONFLATE = <SocketOption.CONFLATE: 54>

	

	
ZAP_DOMAIN = <SocketOption.ZAP_DOMAIN: 55>

	

	
ROUTER_HANDOVER = <SocketOption.ROUTER_HANDOVER: 56>

	

	
TOS = <SocketOption.TOS: 57>

	

	
CONNECT_ROUTING_ID = <SocketOption.CONNECT_ROUTING_ID: 61>

	

	
GSSAPI_SERVER = <SocketOption.GSSAPI_SERVER: 62>

	

	
GSSAPI_PRINCIPAL = <SocketOption.GSSAPI_PRINCIPAL: 63>

	

	
GSSAPI_SERVICE_PRINCIPAL = <SocketOption.GSSAPI_SERVICE_PRINCIPAL: 64>

	

	
GSSAPI_PLAINTEXT = <SocketOption.GSSAPI_PLAINTEXT: 65>

	

	
HANDSHAKE_IVL = <SocketOption.HANDSHAKE_IVL: 66>

	

	
SOCKS_PROXY = <SocketOption.SOCKS_PROXY: 68>

	

	
XPUB_NODROP = <SocketOption.XPUB_NODROP: 69>

	

	
BLOCKY = <SocketOption.BLOCKY: 70>

	

	
XPUB_MANUAL = <SocketOption.XPUB_MANUAL: 71>

	

	
XPUB_WELCOME_MSG = <SocketOption.XPUB_WELCOME_MSG: 72>

	

	
STREAM_NOTIFY = <SocketOption.STREAM_NOTIFY: 73>

	

	
INVERT_MATCHING = <SocketOption.INVERT_MATCHING: 74>

	

	
HEARTBEAT_IVL = <SocketOption.HEARTBEAT_IVL: 75>

	

	
HEARTBEAT_TTL = <SocketOption.HEARTBEAT_TTL: 76>

	

	
HEARTBEAT_TIMEOUT = <SocketOption.HEARTBEAT_TIMEOUT: 77>

	

	
XPUB_VERBOSER = <SocketOption.XPUB_VERBOSER: 78>

	

	
CONNECT_TIMEOUT = <SocketOption.CONNECT_TIMEOUT: 79>

	

	
TCP_MAXRT = <SocketOption.TCP_MAXRT: 80>

	

	
THREAD_SAFE = <SocketOption.THREAD_SAFE: 81>

	

	
MULTICAST_MAXTPDU = <SocketOption.MULTICAST_MAXTPDU: 84>

	

	
VMCI_BUFFER_SIZE = <SocketOption.VMCI_BUFFER_SIZE: 85>

	

	
VMCI_BUFFER_MIN_SIZE = <SocketOption.VMCI_BUFFER_MIN_SIZE: 86>

	

	
VMCI_BUFFER_MAX_SIZE = <SocketOption.VMCI_BUFFER_MAX_SIZE: 87>

	

	
VMCI_CONNECT_TIMEOUT = <SocketOption.VMCI_CONNECT_TIMEOUT: 88>

	

	
USE_FD = <SocketOption.USE_FD: 89>

	

	
GSSAPI_PRINCIPAL_NAMETYPE = <SocketOption.GSSAPI_PRINCIPAL_NAMETYPE: 90>

	

	
GSSAPI_SERVICE_PRINCIPAL_NAMETYPE = <SocketOption.GSSAPI_SERVICE_PRINCIPAL_NAMETYPE: 91>

	

	
BINDTODEVICE = <SocketOption.BINDTODEVICE: 92>

	

	
TCP_ACCEPT_FILTER = <SocketOption.TCP_ACCEPT_FILTER: 38>

	

	
IPC_FILTER_PID = <SocketOption.IPC_FILTER_PID: 58>

	

	
IPC_FILTER_UID = <SocketOption.IPC_FILTER_UID: 59>

	

	
IPC_FILTER_GID = <SocketOption.IPC_FILTER_GID: 60>

	

	
IPV4ONLY = <SocketOption.IPV4ONLY: 31>

	

	
ZAP_ENFORCE_DOMAIN = <SocketOption.ZAP_ENFORCE_DOMAIN: 93>

	

	
LOOPBACK_FASTPATH = <SocketOption.LOOPBACK_FASTPATH: 94>

	

	
METADATA = <SocketOption.METADATA: 95>

	

	
MULTICAST_LOOP = <SocketOption.MULTICAST_LOOP: 96>

	

	
ROUTER_NOTIFY = <SocketOption.ROUTER_NOTIFY: 97>

	

	
XPUB_MANUAL_LAST_VALUE = <SocketOption.XPUB_MANUAL_LAST_VALUE: 98>

	

	
SOCKS_USERNAME = <SocketOption.SOCKS_USERNAME: 99>

	

	
SOCKS_PASSWORD = <SocketOption.SOCKS_PASSWORD: 100>

	

	
IN_BATCH_SIZE = <SocketOption.IN_BATCH_SIZE: 101>

	

	
OUT_BATCH_SIZE = <SocketOption.OUT_BATCH_SIZE: 102>

	

	
WSS_KEY_PEM = <SocketOption.WSS_KEY_PEM: 103>

	

	
WSS_CERT_PEM = <SocketOption.WSS_CERT_PEM: 104>

	

	
WSS_TRUST_PEM = <SocketOption.WSS_TRUST_PEM: 105>

	

	
WSS_HOSTNAME = <SocketOption.WSS_HOSTNAME: 106>

	

	
WSS_TRUST_SYSTEM = <SocketOption.WSS_TRUST_SYSTEM: 107>

	

	
ONLY_FIRST_SUBSCRIBE = <SocketOption.ONLY_FIRST_SUBSCRIBE: 108>

	

	
RECONNECT_STOP = <SocketOption.RECONNECT_STOP: 109>

	

	
HELLO_MSG = <SocketOption.HELLO_MSG: 110>

	

	
DISCONNECT_MSG = <SocketOption.DISCONNECT_MSG: 111>

	

	
PRIORITY = <SocketOption.PRIORITY: 112>

	

	
BUSY_POLL = <SocketOption.BUSY_POLL: 113>

	

	
HICCUP_MSG = <SocketOption.HICCUP_MSG: 114>

	

	
XSUB_VERBOSE_UNSUBSCRIBE = <SocketOption.XSUB_VERBOSE_UNSUBSCRIBE: 115>

	

	
TOPICS_COUNT = <SocketOption.TOPICS_COUNT: 116>

	

	
NORM_MODE = <SocketOption.NORM_MODE: 117>

	

	
NORM_UNICAST_NACK = <SocketOption.NORM_UNICAST_NACK: 118>

	

	
NORM_BUFFER_SIZE = <SocketOption.NORM_BUFFER_SIZE: 119>

	

	
NORM_SEGMENT_SIZE = <SocketOption.NORM_SEGMENT_SIZE: 120>

	

	
NORM_BLOCK_SIZE = <SocketOption.NORM_BLOCK_SIZE: 121>

	

	
NORM_NUM_PARITY = <SocketOption.NORM_NUM_PARITY: 122>

	

	
NORM_NUM_AUTOPARITY = <SocketOption.NORM_NUM_AUTOPARITY: 123>

	

	
NORM_PUSH = <SocketOption.NORM_PUSH: 124>

	

	
enum zmq.Flag(value)

	Send/recv flags

Added in version 23.

	Member Type:

	int [https://docs.python.org/3/library/functions.html#int]

Valid values are as follows:

	
DONTWAIT = <Flag.DONTWAIT: 1>

	

	
SNDMORE = <Flag.SNDMORE: 2>

	

	
enum zmq.PollEvent(value)

	Which events to poll for in poll methods

	Member Type:

	int [https://docs.python.org/3/library/functions.html#int]

Valid values are as follows:

	
POLLIN = <PollEvent.POLLIN: 1>

	

	
POLLOUT = <PollEvent.POLLOUT: 2>

	

	
POLLERR = <PollEvent.POLLERR: 4>

	

	
POLLPRI = <PollEvent.POLLPRI: 8>

	

	
enum zmq.ContextOption(value)

	Options for Context.get/set

Added in version 23.

	Member Type:

	int [https://docs.python.org/3/library/functions.html#int]

Valid values are as follows:

	
IO_THREADS = <ContextOption.IO_THREADS: 1>

	

	
MAX_SOCKETS = <ContextOption.MAX_SOCKETS: 2>

	

	
SOCKET_LIMIT = <ContextOption.SOCKET_LIMIT: 3>

	

	
THREAD_SCHED_POLICY = <ContextOption.THREAD_SCHED_POLICY: 4>

	

	
MAX_MSGSZ = <ContextOption.MAX_MSGSZ: 5>

	

	
MSG_T_SIZE = <ContextOption.MSG_T_SIZE: 6>

	

	
THREAD_AFFINITY_CPU_ADD = <ContextOption.THREAD_AFFINITY_CPU_ADD: 7>

	

	
THREAD_AFFINITY_CPU_REMOVE = <ContextOption.THREAD_AFFINITY_CPU_REMOVE: 8>

	

	
THREAD_NAME_PREFIX = <ContextOption.THREAD_NAME_PREFIX: 9>

	

	
enum zmq.MessageOption(value)

	Options on zmq.Frame objects

Added in version 23.

	Member Type:

	int [https://docs.python.org/3/library/functions.html#int]

Valid values are as follows:

	
MORE = <MessageOption.MORE: 1>

	

	
SHARED = <MessageOption.SHARED: 3>

	

	
SRCFD = <MessageOption.SRCFD: 2>

	

	
enum zmq.Event(value)

	Socket monitoring events

Added in version 23.

	Member Type:

	int [https://docs.python.org/3/library/functions.html#int]

Valid values are as follows:

	
PROTOCOL_ERROR_ZMTP_UNSPECIFIED = <Event.PROTOCOL_ERROR_ZMTP_UNSPECIFIED: 268435456>

	

	
PROTOCOL_ERROR_ZAP_UNSPECIFIED = <Event.PROTOCOL_ERROR_ZAP_UNSPECIFIED: 536870912>

	

	
CONNECTED = <Event.CONNECTED: 1>

	

	
CONNECT_DELAYED = <Event.CONNECT_DELAYED: 2>

	

	
CONNECT_RETRIED = <Event.CONNECT_RETRIED: 4>

	

	
LISTENING = <Event.LISTENING: 8>

	

	
BIND_FAILED = <Event.BIND_FAILED: 16>

	

	
ACCEPTED = <Event.ACCEPTED: 32>

	

	
ACCEPT_FAILED = <Event.ACCEPT_FAILED: 64>

	

	
CLOSED = <Event.CLOSED: 128>

	

	
CLOSE_FAILED = <Event.CLOSE_FAILED: 256>

	

	
DISCONNECTED = <Event.DISCONNECTED: 512>

	

	
MONITOR_STOPPED = <Event.MONITOR_STOPPED: 1024>

	

	
HANDSHAKE_FAILED_NO_DETAIL = <Event.HANDSHAKE_FAILED_NO_DETAIL: 2048>

	

	
HANDSHAKE_SUCCEEDED = <Event.HANDSHAKE_SUCCEEDED: 4096>

	

	
HANDSHAKE_FAILED_PROTOCOL = <Event.HANDSHAKE_FAILED_PROTOCOL: 8192>

	

	
HANDSHAKE_FAILED_AUTH = <Event.HANDSHAKE_FAILED_AUTH: 16384>

	

	
PIPES_STATS = <Event.PIPES_STATS: 65536>

	

	
enum zmq.NormMode(value)

	Values for zmq.NORM_MODE socket option

Added in version 26.

Added in version libzmq-4.3.5: (draft)

	Member Type:

	int [https://docs.python.org/3/library/functions.html#int]

Valid values are as follows:

	
FIXED = <NormMode.FIXED: 0>

	

	
CC = <NormMode.CC: 1>

	

	
CCL = <NormMode.CCL: 2>

	

	
CCE = <NormMode.CCE: 3>

	

	
CCE_ECNONLY = <NormMode.CCE_ECNONLY: 4>

	

	
enum zmq.RouterNotify(value)

	Values for zmq.ROUTER_NOTIFY socket option

Added in version 26.

Added in version libzmq-4.3.0: (draft)

	Member Type:

	int [https://docs.python.org/3/library/functions.html#int]

Valid values are as follows:

	
CONNECT = <RouterNotify.CONNECT: 1>

	

	
DISCONNECT = <RouterNotify.DISCONNECT: 2>

	

	
enum zmq.ReconnectStop(value)

	Select behavior for socket.reconnect_stop

Added in version 25.

	Member Type:

	int [https://docs.python.org/3/library/functions.html#int]

Valid values are as follows:

	
CONN_REFUSED = <ReconnectStop.CONN_REFUSED: 1>

	

	
HANDSHAKE_FAILED = <ReconnectStop.HANDSHAKE_FAILED: 2>

	

	
AFTER_DISCONNECT = <ReconnectStop.AFTER_DISCONNECT: 4>

	

	
enum zmq.SecurityMechanism(value)

	Security mechanisms (as returned by socket.get(zmq.MECHANISM))

Added in version 23.

	Member Type:

	int [https://docs.python.org/3/library/functions.html#int]

Valid values are as follows:

	
NULL = <SecurityMechanism.NULL: 0>

	

	
PLAIN = <SecurityMechanism.PLAIN: 1>

	

	
CURVE = <SecurityMechanism.CURVE: 2>

	

	
GSSAPI = <SecurityMechanism.GSSAPI: 3>

	

	
enum zmq.DeviceType(value)

	Device type constants for zmq.device

	Member Type:

	int [https://docs.python.org/3/library/functions.html#int]

Valid values are as follows:

	
STREAMER = <DeviceType.STREAMER: 1>

	

	
FORWARDER = <DeviceType.FORWARDER: 2>

	

	
QUEUE = <DeviceType.QUEUE: 3>

	

	
enum zmq.Errno(value)

	libzmq error codes

Added in version 23.

	Member Type:

	int [https://docs.python.org/3/library/functions.html#int]

Valid values are as follows:

	
EAGAIN = <Errno.EAGAIN: 11>

	

	
EFAULT = <Errno.EFAULT: 14>

	

	
EINVAL = <Errno.EINVAL: 22>

	

	
ENOTSUP = <Errno.ENOTSUP: 95>

	

	
EPROTONOSUPPORT = <Errno.EPROTONOSUPPORT: 93>

	

	
ENOBUFS = <Errno.ENOBUFS: 105>

	

	
ENETDOWN = <Errno.ENETDOWN: 100>

	

	
EADDRINUSE = <Errno.EADDRINUSE: 98>

	

	
EADDRNOTAVAIL = <Errno.EADDRNOTAVAIL: 99>

	

	
ECONNREFUSED = <Errno.ECONNREFUSED: 111>

	

	
EINPROGRESS = <Errno.EINPROGRESS: 115>

	

	
ENOTSOCK = <Errno.ENOTSOCK: 88>

	

	
EMSGSIZE = <Errno.EMSGSIZE: 90>

	

	
EAFNOSUPPORT = <Errno.EAFNOSUPPORT: 97>

	

	
ENETUNREACH = <Errno.ENETUNREACH: 101>

	

	
ECONNABORTED = <Errno.ECONNABORTED: 103>

	

	
ECONNRESET = <Errno.ECONNRESET: 104>

	

	
ENOTCONN = <Errno.ENOTCONN: 107>

	

	
ETIMEDOUT = <Errno.ETIMEDOUT: 110>

	

	
EHOSTUNREACH = <Errno.EHOSTUNREACH: 113>

	

	
ENETRESET = <Errno.ENETRESET: 102>

	

	
EFSM = <Errno.EFSM: 156384763>

	

	
ENOCOMPATPROTO = <Errno.ENOCOMPATPROTO: 156384764>

	

	
ETERM = <Errno.ETERM: 156384765>

	

	
EMTHREAD = <Errno.EMTHREAD: 156384766>

	

Exceptions

ZMQError

	
class zmq.ZMQError(errno: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None, msg: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None)

	Wrap an errno style error.

	Parameters:

	
	errno (int [https://docs.python.org/3/library/functions.html#int]) – The ZMQ errno or None. If None, then zmq_errno() is called and
used.

	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – Description of the error or None.

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

ZMQVersionError

	
class zmq.ZMQVersionError(min_version: str [https://docs.python.org/3/library/stdtypes.html#str], msg: str [https://docs.python.org/3/library/stdtypes.html#str] = 'Feature')

	Raised when a feature is not provided by the linked version of libzmq.

Added in version 14.2.

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

Again

	
class zmq.Again(errno='ignored', msg='ignored')

	Wrapper for zmq.EAGAIN

Added in version 13.0.

ContextTerminated

	
class zmq.ContextTerminated(errno='ignored', msg='ignored')

	Wrapper for zmq.ETERM

Added in version 13.0.

NotDone

	
class zmq.NotDone

	Raised when timeout is reached while waiting for 0MQ to finish with a Message

See also

	MessageTracker.wait
	object for tracking when ZeroMQ is done

ZMQBindError

	
class zmq.ZMQBindError

	An error for Socket.bind_to_random_port().

See also

Socket.bind_to_random_port

Functions

	
zmq.zmq_version() → str [https://docs.python.org/3/library/stdtypes.html#str]

	return the version of libzmq as a string

	
zmq.pyzmq_version() → str [https://docs.python.org/3/library/stdtypes.html#str]

	return the version of pyzmq as a string

	
zmq.zmq_version_info() → tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]

	Return the version of ZeroMQ itself as a 3-tuple of ints.

	
zmq.pyzmq_version_info() → tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]

	return the pyzmq version as a tuple of at least three numbers

If pyzmq is a development version, inf will be appended after the third integer.

	
zmq.has(capability) → bool [https://docs.python.org/3/library/functions.html#bool]

	Check for zmq capability by name (e.g. ‘ipc’, ‘curve’)

Added in version libzmq-4.1.

Added in version 14.1.

	
zmq.device(device_type: int [https://docs.python.org/3/library/functions.html#int], frontend: zmq.Socket, backend: zmq.Socket = None)

	Start a zeromq device.

Deprecated since version libzmq-3.2: Use zmq.proxy

	Parameters:

	
	device_type (int [https://docs.python.org/3/library/functions.html#int]) – one of: QUEUE, FORWARDER, STREAMER
The type of device to start.

	frontend (Socket) – The Socket instance for the incoming traffic.

	backend (Socket) – The Socket instance for the outbound traffic.

	
zmq.proxy(frontend: zmq.Socket, backend: zmq.Socket, capture: zmq.Socket = None)

	Start a zeromq proxy (replacement for device).

Added in version libzmq-3.2.

Added in version 13.0.

	Parameters:

	
	frontend (Socket) – The Socket instance for the incoming traffic.

	backend (Socket) – The Socket instance for the outbound traffic.

	capture (Socket (optional)) – The Socket instance for capturing traffic.

	
zmq.proxy_steerable(frontend: zmq.Socket, backend: zmq.Socket, capture: zmq.Socket = None, control: zmq.Socket = None)

	Start a zeromq proxy with control flow.

Added in version libzmq-4.1.

Added in version 18.0.

	Parameters:

	
	frontend (Socket) – The Socket instance for the incoming traffic.

	backend (Socket) – The Socket instance for the outbound traffic.

	capture (Socket (optional)) – The Socket instance for capturing traffic.

	control (Socket (optional)) – The Socket instance for control flow.

	
zmq.curve_public(secret_key) → bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Compute the public key corresponding to a secret key for use
with zmq.CURVE security

Requires libzmq (≥ 4.2) to have been built with CURVE support.

	Parameters:

	private – The private key as a 40 byte z85-encoded bytestring

	Returns:

	The public key as a 40 byte z85-encoded bytestring

	Return type:

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	
zmq.curve_keypair() → tuple [https://docs.python.org/3/library/stdtypes.html#tuple][bytes [https://docs.python.org/3/library/stdtypes.html#bytes], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]

	generate a Z85 key pair for use with zmq.CURVE security

Requires libzmq (≥ 4.0) to have been built with CURVE support.

Added in version libzmq-4.0.

Added in version 14.0.

	Returns:

	
	public (bytes) – The public key as 40 byte z85-encoded bytestring.

	private (bytes) – The private key as 40 byte z85-encoded bytestring.

	
zmq.get_includes()

	Return a list of directories to include for linking against pyzmq with cython.

	
zmq.get_library_dirs()

	Return a list of directories used to link against pyzmq’s bundled libzmq.

	
zmq.strerror(errno: int [https://docs.python.org/3/library/functions.html#int]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Return the error string given the error number.

devices

Functions

	
zmq.device(device_type: int [https://docs.python.org/3/library/functions.html#int], frontend: zmq.Socket, backend: zmq.Socket = None)

	Start a zeromq device.

Deprecated since version libzmq-3.2: Use zmq.proxy

	Parameters:

	
	device_type (int [https://docs.python.org/3/library/functions.html#int]) – one of: QUEUE, FORWARDER, STREAMER
The type of device to start.

	frontend (Socket) – The Socket instance for the incoming traffic.

	backend (Socket) – The Socket instance for the outbound traffic.

	
zmq.proxy(frontend: zmq.Socket, backend: zmq.Socket, capture: zmq.Socket = None)

	Start a zeromq proxy (replacement for device).

Added in version libzmq-3.2.

Added in version 13.0.

	Parameters:

	
	frontend (Socket) – The Socket instance for the incoming traffic.

	backend (Socket) – The Socket instance for the outbound traffic.

	capture (Socket (optional)) – The Socket instance for capturing traffic.

	
zmq.proxy_steerable(frontend: zmq.Socket, backend: zmq.Socket, capture: zmq.Socket = None, control: zmq.Socket = None)

	Start a zeromq proxy with control flow.

Added in version libzmq-4.1.

Added in version 18.0.

	Parameters:

	
	frontend (Socket) – The Socket instance for the incoming traffic.

	backend (Socket) – The Socket instance for the outbound traffic.

	capture (Socket (optional)) – The Socket instance for capturing traffic.

	control (Socket (optional)) – The Socket instance for control flow.

Module: zmq.devices

0MQ Device classes for running in background threads or processes.

Base Devices

Device

	
class zmq.devices.Device(device_type: int [https://docs.python.org/3/library/functions.html#int] = DeviceType.QUEUE, in_type: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None, out_type: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None)

	A 0MQ Device to be run in the background.

You do not pass Socket instances to this, but rather Socket types:

Device(device_type, in_socket_type, out_socket_type)

For instance:

dev = Device(zmq.QUEUE, zmq.DEALER, zmq.ROUTER)

Similar to zmq.device, but socket types instead of sockets themselves are
passed, and the sockets are created in the work thread, to avoid issues
with thread safety. As a result, additional bind_{in|out} and
connect_{in|out} methods and setsockopt_{in|out} allow users to specify
connections for the sockets.

	Parameters:

	
	device_type (int [https://docs.python.org/3/library/functions.html#int]) – The 0MQ Device type

	{in|out}_type (int [https://docs.python.org/3/library/functions.html#int]) – zmq socket types, to be passed later to context.socket(). e.g.
zmq.PUB, zmq.SUB, zmq.REQ. If out_type is < 0, then in_socket is used
for both in_socket and out_socket.

	
bind_{in_out}(iface)

	passthrough for {in|out}_socket.bind(iface), to be called in the thread

	
connect_{in_out}(iface)

	passthrough for {in|out}_socket.connect(iface), to be called in the
thread

	
setsockopt_{in_out}(opt,value)

	passthrough for {in|out}_socket.setsockopt(opt, value), to be called in
the thread

	
daemon

	sets whether the thread should be run as a daemon
Default is true, because if it is false, the thread will not
exit unless it is killed

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
context_factory

	This is a class attribute.
Function for creating the Context. This will be Context.instance
in ThreadDevices, and Context in ProcessDevices. The only reason
it is not instance() in ProcessDevices is that there may be a stale
Context instance already initialized, and the forked environment
should never try to use it.

	Type:

	callable

	
bind_in(addr: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Enqueue ZMQ address for binding on in_socket.

See zmq.Socket.bind for details.

	
bind_in_to_random_port(addr: str [https://docs.python.org/3/library/stdtypes.html#str], *args, **kwargs) → int [https://docs.python.org/3/library/functions.html#int]

	Enqueue a random port on the given interface for binding on
in_socket.

See zmq.Socket.bind_to_random_port for details.

Added in version 18.0.

	
bind_out(addr: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Enqueue ZMQ address for binding on out_socket.

See zmq.Socket.bind for details.

	
bind_out_to_random_port(addr: str [https://docs.python.org/3/library/stdtypes.html#str], *args, **kwargs) → int [https://docs.python.org/3/library/functions.html#int]

	Enqueue a random port on the given interface for binding on
out_socket.

See zmq.Socket.bind_to_random_port for details.

Added in version 18.0.

	
connect_in(addr: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Enqueue ZMQ address for connecting on in_socket.

See zmq.Socket.connect for details.

	
connect_out(addr: str [https://docs.python.org/3/library/stdtypes.html#str])

	Enqueue ZMQ address for connecting on out_socket.

See zmq.Socket.connect for details.

	
join(timeout: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None) → None [https://docs.python.org/3/library/constants.html#None]

	wait for me to finish, like Thread.join.

Reimplemented appropriately by subclasses.

	
setsockopt_in(opt: int [https://docs.python.org/3/library/functions.html#int], value: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	Enqueue setsockopt(opt, value) for in_socket

See zmq.Socket.setsockopt for details.

	
setsockopt_out(opt: int [https://docs.python.org/3/library/functions.html#int], value: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	Enqueue setsockopt(opt, value) for out_socket

See zmq.Socket.setsockopt for details.

	
start() → None [https://docs.python.org/3/library/constants.html#None]

	Start the device. Override me in subclass for other launchers.

ThreadDevice

	
class zmq.devices.ThreadDevice(device_type: int [https://docs.python.org/3/library/functions.html#int] = DeviceType.QUEUE, in_type: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None, out_type: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None)

	A Device that will be run in a background Thread.

See Device for details.

ProcessDevice

	
class zmq.devices.ProcessDevice(device_type: int [https://docs.python.org/3/library/functions.html#int] = DeviceType.QUEUE, in_type: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None, out_type: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None)

	A Device that will be run in a background Process.

See Device for details.

	
context_factory

	alias of Context

Proxy Devices

Proxy

	
class zmq.devices.Proxy(in_type, out_type, mon_type=SocketType.PUB)

	Threadsafe Proxy object.

See zmq.devices.Device for most of the spec. This subclass adds a
<method>_mon version of each <method>_{in|out} method, for configuring the
monitor socket.

A Proxy is a 3-socket ZMQ Device that functions just like a
QUEUE, except each message is also sent out on the monitor socket.

A PUB socket is the most logical choice for the mon_socket, but it is not required.

	
bind_mon(addr)

	Enqueue ZMQ address for binding on mon_socket.

See zmq.Socket.bind for details.

	
connect_mon(addr)

	Enqueue ZMQ address for connecting on mon_socket.

See zmq.Socket.connect for details.

	
setsockopt_mon(opt, value)

	Enqueue setsockopt(opt, value) for mon_socket

See zmq.Socket.setsockopt for details.

ThreadProxy

	
class zmq.devices.ThreadProxy(in_type, out_type, mon_type=SocketType.PUB)

	Proxy in a Thread. See Proxy for more.

ProcessProxy

	
class zmq.devices.ProcessProxy(in_type, out_type, mon_type=SocketType.PUB)

	Proxy in a Process. See Proxy for more.

ProxySteerable

	
class zmq.devices.ProxySteerable(in_type, out_type, mon_type=SocketType.PUB, ctrl_type=None)

	Class for running a steerable proxy in the background.

See zmq.devices.Proxy for most of the spec. If the control socket is not
NULL, the proxy supports control flow, provided by the socket.

If PAUSE is received on this socket, the proxy suspends its activities. If
RESUME is received, it goes on. If TERMINATE is received, it terminates
smoothly. If the control socket is NULL, the proxy behave exactly as if
zmq.devices.Proxy had been used.

This subclass adds a <method>_ctrl version of each <method>_{in|out}
method, for configuring the control socket.

Added in version libzmq-4.1.

Added in version 18.0.

	
bind_ctrl(addr)

	Enqueue ZMQ address for binding on ctrl_socket.

See zmq.Socket.bind for details.

	
connect_ctrl(addr)

	Enqueue ZMQ address for connecting on ctrl_socket.

See zmq.Socket.connect for details.

	
setsockopt_ctrl(opt, value)

	Enqueue setsockopt(opt, value) for ctrl_socket

See zmq.Socket.setsockopt for details.

ThreadProxySteerable

	
class zmq.devices.ThreadProxySteerable(in_type, out_type, mon_type=SocketType.PUB, ctrl_type=None)

	ProxySteerable in a Thread. See ProxySteerable for details.

ProcessProxySteerable

	
class zmq.devices.ProcessProxySteerable(in_type, out_type, mon_type=SocketType.PUB, ctrl_type=None)

	ProxySteerable in a Process. See ProxySteerable for details.

MonitoredQueue Devices

	
zmq.devices.monitored_queue(in_socket: zmq.Socket, out_socket: zmq.Socket, mon_socket: zmq.Socket, in_prefix: bytes [https://docs.python.org/3/library/stdtypes.html#bytes] = b'in', out_prefix: bytes [https://docs.python.org/3/library/stdtypes.html#bytes] = b'out')

	Start a monitored queue device.

A monitored queue is very similar to the zmq.proxy device (monitored queue came first).

Differences from zmq.proxy:

	monitored_queue supports both in and out being ROUTER sockets
(via swapping IDENTITY prefixes).

	monitor messages are prefixed, making in and out messages distinguishable.

	Parameters:

	
	in_socket (zmq.Socket) – One of the sockets to the Queue. Its messages will be prefixed with
‘in’.

	out_socket (zmq.Socket) – One of the sockets to the Queue. Its messages will be prefixed with
‘out’. The only difference between in/out socket is this prefix.

	mon_socket (zmq.Socket) – This socket sends out every message received by each of the others
with an in/out prefix specifying which one it was.

	in_prefix (str [https://docs.python.org/3/library/stdtypes.html#str]) – Prefix added to broadcast messages from in_socket.

	out_prefix (str [https://docs.python.org/3/library/stdtypes.html#str]) – Prefix added to broadcast messages from out_socket.

MonitoredQueue

	
class zmq.devices.MonitoredQueue(in_type, out_type, mon_type=SocketType.PUB, in_prefix=b'in', out_prefix=b'out')

	Class for running monitored_queue in the background.

See zmq.devices.Device for most of the spec. MonitoredQueue differs from Proxy,
only in that it adds a prefix to messages sent on the monitor socket,
with a different prefix for each direction.

MQ also supports ROUTER on both sides, which zmq.proxy does not.

If a message arrives on in_sock, it will be prefixed with in_prefix on the monitor socket.
If it arrives on out_sock, it will be prefixed with out_prefix.

A PUB socket is the most logical choice for the mon_socket, but it is not required.

ThreadMonitoredQueue

	
class zmq.devices.ThreadMonitoredQueue(in_type, out_type, mon_type=SocketType.PUB, in_prefix=b'in', out_prefix=b'out')

	Run zmq.monitored_queue in a background thread.

See MonitoredQueue and Proxy for details.

ProcessMonitoredQueue

	
class zmq.devices.ProcessMonitoredQueue(in_type, out_type, mon_type=SocketType.PUB, in_prefix=b'in', out_prefix=b'out')

	Run zmq.monitored_queue in a separate process.

See MonitoredQueue and Proxy for details.

decorators

Module: zmq.decorators

Decorators for running functions with context/sockets.

Added in version 15.3.

Like using Contexts and Sockets as context managers, but with decorator syntax.
Context and sockets are closed at the end of the function.

For example:

from zmq.decorators import context, socket

@context()
@socket(zmq.PUSH)
def work(ctx, push):
 ...

Decorators

	
zmq.decorators.context(*args, **kwargs)

	Decorator for adding a Context to a function.

Usage:

@context()
def foo(ctx):
 ...

Added in version 15.3.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the keyword argument passed to decorated function

	
zmq.decorators.socket(*args, **kwargs)

	Decorator for adding a socket to a function.

Usage:

@socket(zmq.PUSH)
def foo(push):
 ...

Added in version 15.3.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the keyword argument passed to decorated function

	context_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the keyword only argument to identify context
object

green

Module: zmq.green

zmq.green - gevent compatibility with zeromq.

Usage

Instead of importing zmq directly, do so in the following manner:

import zmq.green as zmq

Any calls that would have blocked the current thread will now only block the
current green thread.

This compatibility is accomplished by ensuring the nonblocking flag is set
before any blocking operation and the ØMQ file descriptor is polled internally
to trigger needed events.

eventloop.ioloop

Module: zmq.eventloop.ioloop

This module is deprecated in pyzmq 17.
Use tornado.ioloop [https://www.tornadoweb.org/en/stable/ioloop.html#module-tornado.ioloop].

eventloop.future

Module: zmq.eventloop.future

Future-returning APIs for tornado coroutines.

See also

zmq.asyncio

Added in version 15.0.

As of pyzmq 15, there is a new Socket subclass that returns Futures for recv methods,
which can be found at Socket.
You can create these sockets by instantiating a Context
from the same module.
These sockets let you easily use zmq with tornado’s coroutines.

See also

tornado.gen [https://www.tornadoweb.org/en/stable/gen.html#module-tornado.gen]

from tornado import gen
from zmq.eventloop.future import Context

ctx = Context()

@gen.coroutine
def recv_and_process():
 sock = ctx.socket(zmq.PULL)
 sock.bind(url)
 msg = yield sock.recv_multipart() # waits for msg to be ready
 reply = yield async_process(msg)
 yield sock.send_multipart(reply)

Classes

Context

Context class that creates Future-returning sockets. See zmq.Context for more info.

	
class zmq.eventloop.future.Context(*args: Any [https://docs.python.org/3/library/typing.html#typing.Any], **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	

Socket

Socket subclass that returns Future [https://www.tornadoweb.org/en/stable/concurrent.html#tornado.concurrent.Future] s from blocking methods,
for use in coroutines and async applications.

See also

zmq.Socket for the inherited API.

	
class zmq.eventloop.future.Socket(context=None, socket_type=-1, io_loop=None, _from_socket: Socket | None [https://docs.python.org/3/library/constants.html#None] = None, **kwargs)

	
	
recv(flags: int [https://docs.python.org/3/library/functions.html#int] = 0, copy: bool [https://docs.python.org/3/library/functions.html#bool] = True, track: bool [https://docs.python.org/3/library/functions.html#bool] = False) → Awaitable [https://docs.python.org/3/library/typing.html#typing.Awaitable][bytes [https://docs.python.org/3/library/stdtypes.html#bytes] | Frame]

	Receive a single zmq frame.

Returns a Future, whose result will be the received frame.

Recommend using recv_multipart instead.

	
recv_multipart(flags: int [https://docs.python.org/3/library/functions.html#int] = 0, copy: bool [https://docs.python.org/3/library/functions.html#bool] = True, track: bool [https://docs.python.org/3/library/functions.html#bool] = False) → Awaitable [https://docs.python.org/3/library/typing.html#typing.Awaitable][list [https://docs.python.org/3/library/stdtypes.html#list][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]] | list [https://docs.python.org/3/library/stdtypes.html#list][Frame]]

	Receive a complete multipart zmq message.

Returns a Future whose result will be a multipart message.

	
send(data: Any [https://docs.python.org/3/library/typing.html#typing.Any], flags: int [https://docs.python.org/3/library/functions.html#int] = 0, copy: bool [https://docs.python.org/3/library/functions.html#bool] = True, track: bool [https://docs.python.org/3/library/functions.html#bool] = False, **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → Awaitable [https://docs.python.org/3/library/typing.html#typing.Awaitable][MessageTracker | None [https://docs.python.org/3/library/constants.html#None]]

	Send a single zmq frame.

Returns a Future that resolves when sending is complete.

Recommend using send_multipart instead.

	
send_multipart(msg_parts: Any [https://docs.python.org/3/library/typing.html#typing.Any], flags: int [https://docs.python.org/3/library/functions.html#int] = 0, copy: bool [https://docs.python.org/3/library/functions.html#bool] = True, track=False, **kwargs) → Awaitable [https://docs.python.org/3/library/typing.html#typing.Awaitable][MessageTracker | None [https://docs.python.org/3/library/constants.html#None]]

	Send a complete multipart zmq message.

Returns a Future that resolves when sending is complete.

	
poll(timeout=None, flags=<PollEvent.POLLIN: 1>) → Awaitable [https://docs.python.org/3/library/typing.html#typing.Awaitable][int [https://docs.python.org/3/library/functions.html#int]]

	poll the socket for events

returns a Future for the poll results.

Poller

Poller subclass that returns Future [https://www.tornadoweb.org/en/stable/concurrent.html#tornado.concurrent.Future] s from poll,
for use in coroutines and async applications.

See also

zmq.Poller for the inherited API.

	
class zmq.eventloop.future.Poller

	
	
poll(timeout=-1) → Awaitable [https://docs.python.org/3/library/typing.html#typing.Awaitable][list [https://docs.python.org/3/library/stdtypes.html#list][tuple [https://docs.python.org/3/library/stdtypes.html#tuple][Any [https://docs.python.org/3/library/typing.html#typing.Any], int [https://docs.python.org/3/library/functions.html#int]]]]

	Return a Future for a poll event

asyncio

Module: zmq.asyncio

AsyncIO support for zmq

Requires asyncio and Python 3.

Added in version 15.0.

As of 15.0, pyzmq now supports asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio], via zmq.asyncio.
When imported from this module, blocking methods such as
Socket.recv_multipart(), Socket.poll(),
and Poller.poll() return Future [https://docs.python.org/3/library/asyncio-future.html#asyncio.Future] s.

import asyncio
import zmq
import zmq.asyncio

ctx = zmq.asyncio.Context()

async def recv_and_process():
 sock = ctx.socket(zmq.PULL)
 sock.bind(url)
 msg = await sock.recv_multipart() # waits for msg to be ready
 reply = await async_process(msg)
 await sock.send_multipart(reply)

asyncio.run(recv_and_process())

Classes

Context

Context class that creates Future-returning sockets. See zmq.Context for more info.

	
class zmq.asyncio.Context(io_threads: int [https://docs.python.org/3/library/functions.html#int] = 1)

	
class zmq.asyncio.Context(io_threads: Context)

	
class zmq.asyncio.Context(*, shadow: Context | int [https://docs.python.org/3/library/functions.html#int])

	Context for creating asyncio-compatible Sockets

Socket

Socket subclass that returns asyncio.Future [https://docs.python.org/3/library/asyncio-future.html#asyncio.Future] s from blocking methods,
for use in coroutines and async applications.

See also

zmq.Socket for the inherited API.

	
class zmq.asyncio.Socket(context=None, socket_type=-1, io_loop=None, _from_socket: Socket | None [https://docs.python.org/3/library/constants.html#None] = None, **kwargs)

	Socket returning asyncio Futures for send/recv/poll methods.

	
recv(flags: int [https://docs.python.org/3/library/functions.html#int] = 0, copy: bool [https://docs.python.org/3/library/functions.html#bool] = True, track: bool [https://docs.python.org/3/library/functions.html#bool] = False) → Awaitable [https://docs.python.org/3/library/typing.html#typing.Awaitable][bytes [https://docs.python.org/3/library/stdtypes.html#bytes] | Frame]

	Receive a single zmq frame.

Returns a Future, whose result will be the received frame.

Recommend using recv_multipart instead.

	
recv_multipart(flags: int [https://docs.python.org/3/library/functions.html#int] = 0, copy: bool [https://docs.python.org/3/library/functions.html#bool] = True, track: bool [https://docs.python.org/3/library/functions.html#bool] = False) → Awaitable [https://docs.python.org/3/library/typing.html#typing.Awaitable][list [https://docs.python.org/3/library/stdtypes.html#list][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]] | list [https://docs.python.org/3/library/stdtypes.html#list][Frame]]

	Receive a complete multipart zmq message.

Returns a Future whose result will be a multipart message.

	
send(data: Any [https://docs.python.org/3/library/typing.html#typing.Any], flags: int [https://docs.python.org/3/library/functions.html#int] = 0, copy: bool [https://docs.python.org/3/library/functions.html#bool] = True, track: bool [https://docs.python.org/3/library/functions.html#bool] = False, **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → Awaitable [https://docs.python.org/3/library/typing.html#typing.Awaitable][MessageTracker | None [https://docs.python.org/3/library/constants.html#None]]

	Send a single zmq frame.

Returns a Future that resolves when sending is complete.

Recommend using send_multipart instead.

	
send_multipart(msg_parts: Any [https://docs.python.org/3/library/typing.html#typing.Any], flags: int [https://docs.python.org/3/library/functions.html#int] = 0, copy: bool [https://docs.python.org/3/library/functions.html#bool] = True, track=False, **kwargs) → Awaitable [https://docs.python.org/3/library/typing.html#typing.Awaitable][MessageTracker | None [https://docs.python.org/3/library/constants.html#None]]

	Send a complete multipart zmq message.

Returns a Future that resolves when sending is complete.

	
poll(timeout=None, flags=<PollEvent.POLLIN: 1>) → Awaitable [https://docs.python.org/3/library/typing.html#typing.Awaitable][int [https://docs.python.org/3/library/functions.html#int]]

	poll the socket for events

returns a Future for the poll results.

Poller

Poller subclass that returns asyncio.Future [https://docs.python.org/3/library/asyncio-future.html#asyncio.Future] s from poll,
for use in coroutines and async applications.

See also

zmq.Poller for the inherited API.

	
class zmq.asyncio.Poller

	Poller returning asyncio.Future for poll results.

	
poll(timeout=-1) → Awaitable [https://docs.python.org/3/library/typing.html#typing.Awaitable][list [https://docs.python.org/3/library/stdtypes.html#list][tuple [https://docs.python.org/3/library/stdtypes.html#tuple][Any [https://docs.python.org/3/library/typing.html#typing.Any], int [https://docs.python.org/3/library/functions.html#int]]]]

	Return a Future for a poll event

eventloop.zmqstream

Module: zmq.eventloop.zmqstream

A utility class for event-based messaging on a zmq socket using tornado.

See also

	zmq.asyncio

	zmq.eventloop.future

ZMQStream

	
class zmq.eventloop.zmqstream.ZMQStream(socket: Socket, io_loop: IOLoop [https://www.tornadoweb.org/en/stable/ioloop.html#tornado.ioloop.IOLoop] | None [https://docs.python.org/3/library/constants.html#None] = None)

	A utility class to register callbacks when a zmq socket sends and receives

For use with tornado IOLoop.

There are three main methods

Methods:

	
	on_recv(callback, copy=True):
	register a callback to be run every time the socket has something to receive

	
	on_send(callback):
	register a callback to be run every time you call send

	
	send_multipart(self, msg, flags=0, copy=False, callback=None):
	perform a send that will trigger the callback
if callback is passed, on_send is also called.

There are also send_multipart(), send_json(), send_pyobj()

Three other methods for deactivating the callbacks:

	
	stop_on_recv():
	turn off the recv callback

	
	stop_on_send():
	turn off the send callback

which simply call on_<evt>(None).

The entire socket interface, excluding direct recv methods, is also
provided, primarily through direct-linking the methods.
e.g.

>>> stream.bind is stream.socket.bind
True

Added in version 25: send/recv callbacks can be coroutines.

Changed in version 25: ZMQStreams only support base zmq.Socket classes (this has always been true, but not enforced).
If ZMQStreams are created with e.g. async Socket subclasses,
a RuntimeWarning will be shown,
and the socket cast back to the default zmq.Socket
before connecting events.

Previously, using async sockets (or any zmq.Socket subclass) would result in undefined behavior for the
arguments passed to callback functions.
Now, the callback functions reliably get the return value of the base zmq.Socket send/recv_multipart methods
(the list of message frames).

	
close(linger: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Close this stream.

	
closed() → bool [https://docs.python.org/3/library/functions.html#bool]

	

	
flush(flag: int = <PollEvent.POLLIN|POLLOUT: 3>, limit: int | None = None)

	Flush pending messages.

This method safely handles all pending incoming and/or outgoing messages,
bypassing the inner loop, passing them to the registered callbacks.

A limit can be specified, to prevent blocking under high load.

	flush will return the first time ANY of these conditions are met:
	
	No more events matching the flag are pending.

	the total number of events handled reaches the limit.

Note that if flag|POLLIN != 0, recv events will be flushed even if no callback
is registered, unlike normal IOLoop operation. This allows flush to be
used to remove and ignore incoming messages.

	Parameters:

	
	flag (int [https://docs.python.org/3/library/functions.html#int]) – default=POLLIN|POLLOUT
0MQ poll flags.
If flag|POLLIN, recv events will be flushed.
If flag|POLLOUT, send events will be flushed.
Both flags can be set at once, which is the default.

	limit (None or int [https://docs.python.org/3/library/functions.html#int], optional) – The maximum number of messages to send or receive.
Both send and recv count against this limit.

	Returns:

	count of events handled (both send and recv)

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
io_loop: IOLoop [https://www.tornadoweb.org/en/stable/ioloop.html#tornado.ioloop.IOLoop]

	

	
on_err(callback: Callable [https://docs.python.org/3/library/typing.html#typing.Callable])

	DEPRECATED, does nothing

	
on_recv(callback: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[list [https://docs.python.org/3/library/stdtypes.html#list][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) → None [https://docs.python.org/3/library/constants.html#None]

	
on_recv(callback: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[list [https://docs.python.org/3/library/stdtypes.html#list][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]], Any [https://docs.python.org/3/library/typing.html#typing.Any]], copy: Literal [https://docs.python.org/3/library/typing.html#typing.Literal][True]) → None [https://docs.python.org/3/library/constants.html#None]

	
on_recv(callback: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[list [https://docs.python.org/3/library/stdtypes.html#list][Frame]], Any [https://docs.python.org/3/library/typing.html#typing.Any]], copy: Literal [https://docs.python.org/3/library/typing.html#typing.Literal][False]) → None [https://docs.python.org/3/library/constants.html#None]

	
on_recv(callback: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[list [https://docs.python.org/3/library/stdtypes.html#list][Frame]], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[list [https://docs.python.org/3/library/stdtypes.html#list][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]], Any [https://docs.python.org/3/library/typing.html#typing.Any]], copy: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	Register a callback for when a message is ready to recv.

There can be only one callback registered at a time, so each
call to on_recv replaces previously registered callbacks.

on_recv(None) disables recv event polling.

Use on_recv_stream(callback) instead, to register a callback that will receive
both this ZMQStream and the message, instead of just the message.

	Parameters:

	
	callback (callable) – callback must take exactly one argument, which will be a
list, as returned by socket.recv_multipart()
if callback is None, recv callbacks are disabled.

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – copy is passed directly to recv, so if copy is False,
callback will receive Message objects. If copy is True,
then callback will receive bytes/str objects.

	Returns (None)

	
on_recv_stream(callback: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[ZMQStream, list [https://docs.python.org/3/library/stdtypes.html#list][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) → None [https://docs.python.org/3/library/constants.html#None]

	
on_recv_stream(callback: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[ZMQStream, list [https://docs.python.org/3/library/stdtypes.html#list][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]], Any [https://docs.python.org/3/library/typing.html#typing.Any]], copy: Literal [https://docs.python.org/3/library/typing.html#typing.Literal][True]) → None [https://docs.python.org/3/library/constants.html#None]

	
on_recv_stream(callback: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[ZMQStream, list [https://docs.python.org/3/library/stdtypes.html#list][Frame]], Any [https://docs.python.org/3/library/typing.html#typing.Any]], copy: Literal [https://docs.python.org/3/library/typing.html#typing.Literal][False]) → None [https://docs.python.org/3/library/constants.html#None]

	
on_recv_stream(callback: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[ZMQStream, list [https://docs.python.org/3/library/stdtypes.html#list][Frame]], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[ZMQStream, list [https://docs.python.org/3/library/stdtypes.html#list][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]], Any [https://docs.python.org/3/library/typing.html#typing.Any]], copy: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	Same as on_recv, but callback will get this stream as first argument

callback must take exactly two arguments, as it will be called as:

callback(stream, msg)

Useful when a single callback should be used with multiple streams.

	
on_send(callback: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Any [https://docs.python.org/3/library/typing.html#typing.Any]], MessageTracker | None [https://docs.python.org/3/library/constants.html#None]], Any [https://docs.python.org/3/library/typing.html#typing.Any]])

	Register a callback to be called on each send

There will be two arguments:

callback(msg, status)

	msg will be the list of sendable objects that was just sent

	status will be the return result of socket.send_multipart(msg) -
MessageTracker or None.

Non-copying sends return a MessageTracker object whose
done attribute will be True when the send is complete.
This allows users to track when an object is safe to write to
again.

The second argument will always be None if copy=True
on the send.

Use on_send_stream(callback) to register a callback that will be passed
this ZMQStream as the first argument, in addition to the other two.

on_send(None) disables recv event polling.

	Parameters:

	callback (callable) – callback must take exactly two arguments, which will be
the message being sent (always a list),
and the return result of socket.send_multipart(msg) -
MessageTracker or None.

if callback is None, send callbacks are disabled.

	
on_send_stream(callback: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[ZMQStream, Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Any [https://docs.python.org/3/library/typing.html#typing.Any]], MessageTracker | None [https://docs.python.org/3/library/constants.html#None]], Any [https://docs.python.org/3/library/typing.html#typing.Any]])

	Same as on_send, but callback will get this stream as first argument

Callback will be passed three arguments:

callback(stream, msg, status)

Useful when a single callback should be used with multiple streams.

	
poller: Poller

	

	
receiving() → bool [https://docs.python.org/3/library/functions.html#bool]

	Returns True if we are currently receiving from the stream.

	
send(msg, flags=0, copy=True, track=False, callback=None, **kwargs)

	Send a message, optionally also register a new callback for sends.
See zmq.socket.send for details.

	
send_json(obj: Any [https://docs.python.org/3/library/typing.html#typing.Any], flags: int [https://docs.python.org/3/library/functions.html#int] = 0, callback: Callable [https://docs.python.org/3/library/typing.html#typing.Callable] | None [https://docs.python.org/3/library/constants.html#None] = None, **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	Send json-serialized version of an object.
See zmq.socket.send_json for details.

	
send_multipart(msg: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Any [https://docs.python.org/3/library/typing.html#typing.Any]], flags: int [https://docs.python.org/3/library/functions.html#int] = 0, copy: bool [https://docs.python.org/3/library/functions.html#bool] = True, track: bool [https://docs.python.org/3/library/functions.html#bool] = False, callback: Callable [https://docs.python.org/3/library/typing.html#typing.Callable] | None [https://docs.python.org/3/library/constants.html#None] = None, **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	Send a multipart message, optionally also register a new callback for sends.
See zmq.socket.send_multipart for details.

	
send_pyobj(obj: Any [https://docs.python.org/3/library/typing.html#typing.Any], flags: int [https://docs.python.org/3/library/functions.html#int] = 0, protocol: int [https://docs.python.org/3/library/functions.html#int] = -1, callback: Callable [https://docs.python.org/3/library/typing.html#typing.Callable] | None [https://docs.python.org/3/library/constants.html#None] = None, **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	Send a Python object as a message using pickle to serialize.

See zmq.socket.send_json for details.

	
send_string(u: str [https://docs.python.org/3/library/stdtypes.html#str], flags: int [https://docs.python.org/3/library/functions.html#int] = 0, encoding: str [https://docs.python.org/3/library/stdtypes.html#str] = 'utf-8', callback: Callable [https://docs.python.org/3/library/typing.html#typing.Callable] | None [https://docs.python.org/3/library/constants.html#None] = None, **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	Send a unicode message with an encoding.
See zmq.socket.send_unicode for details.

	
send_unicode(u: str [https://docs.python.org/3/library/stdtypes.html#str], flags: int [https://docs.python.org/3/library/functions.html#int] = 0, encoding: str [https://docs.python.org/3/library/stdtypes.html#str] = 'utf-8', callback: Callable [https://docs.python.org/3/library/typing.html#typing.Callable] | None [https://docs.python.org/3/library/constants.html#None] = None, **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	Send a unicode message with an encoding.
See zmq.socket.send_unicode for details.

	
sending() → bool [https://docs.python.org/3/library/functions.html#bool]

	Returns True if we are currently sending to the stream.

	
set_close_callback(callback: Callable [https://docs.python.org/3/library/typing.html#typing.Callable] | None [https://docs.python.org/3/library/constants.html#None])

	Call the given callback when the stream is closed.

	
socket: Socket

	

	
stop_on_err()

	DEPRECATED, does nothing

	
stop_on_recv()

	Disable callback and automatic receiving.

	
stop_on_send()

	Disable callback on sending.

auth

Module: zmq.auth

Utilities for ZAP authentication.

To run authentication in a background thread, see zmq.auth.thread.
For integration with the asyncio event loop, see zmq.auth.asyncio.

Authentication examples are provided in the pyzmq codebase, under
/examples/security/.

Added in version 14.1.

Authenticator

	
class zmq.auth.Authenticator(context: Context | None [https://docs.python.org/3/library/constants.html#None] = None, encoding: str [https://docs.python.org/3/library/stdtypes.html#str] = 'utf-8', log: Any [https://docs.python.org/3/library/typing.html#typing.Any] = None)

	Implementation of ZAP authentication for zmq connections.

This authenticator class does not register with an event loop. As a result,
you will need to manually call handle_zap_message:

auth = zmq.Authenticator()
auth.allow("127.0.0.1")
auth.start()
while True:
 await auth.handle_zap_msg(auth.zap_socket.recv_multipart())

Alternatively, you can register auth.zap_socket with a poller.

Since many users will want to run ZAP in a way that does not block the
main thread, other authentication classes (such as zmq.auth.thread)
are provided.

Note:

	libzmq provides four levels of security: default NULL (which the Authenticator does
not see), and authenticated NULL, PLAIN, CURVE, and GSSAPI, which the Authenticator can see.

	until you add policies, all incoming NULL connections are allowed.
(classic ZeroMQ behavior), and all PLAIN and CURVE connections are denied.

	GSSAPI requires no configuration.

	
allow(*addresses: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Allow IP address(es).

Connections from addresses not explicitly allowed will be rejected.

	For NULL, all clients from this address will be accepted.

	For real auth setups, they will be allowed to continue with authentication.

allow is mutually exclusive with deny.

	
allow_any: bool [https://docs.python.org/3/library/functions.html#bool]

	

	
certs: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][bytes [https://docs.python.org/3/library/stdtypes.html#bytes], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]

	

	
configure_curve(domain: str [https://docs.python.org/3/library/stdtypes.html#str] = '*', location: str [https://docs.python.org/3/library/stdtypes.html#str] | PathLike [https://docs.python.org/3/library/os.html#os.PathLike] = '.') → None [https://docs.python.org/3/library/constants.html#None]

	Configure CURVE authentication for a given domain.

CURVE authentication uses a directory that holds all public client certificates,
i.e. their public keys.

To cover all domains, use “*”.

You can add and remove certificates in that directory at any time. configure_curve must be called
every time certificates are added or removed, in order to update the Authenticator’s state

To allow all client keys without checking, specify CURVE_ALLOW_ANY for the location.

	
configure_curve_callback(domain: str [https://docs.python.org/3/library/stdtypes.html#str] = '*', credentials_provider: Any [https://docs.python.org/3/library/typing.html#typing.Any] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Configure CURVE authentication for a given domain.

CURVE authentication using a callback function validating
the client public key according to a custom mechanism, e.g. checking the
key against records in a db. credentials_provider is an object of a class which
implements a callback method accepting two parameters (domain and key), e.g.:

class CredentialsProvider(object):

 def __init__(self):
 ...e.g. db connection

 def callback(self, domain, key):
 valid = ...lookup key and/or domain in db
 if valid:
 logging.info('Authorizing: {0}, {1}'.format(domain, key))
 return True
 else:
 logging.warning('NOT Authorizing: {0}, {1}'.format(domain, key))
 return False

To cover all domains, use “*”.

	
configure_gssapi(domain: str [https://docs.python.org/3/library/stdtypes.html#str] = '*', location: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Configure GSSAPI authentication

Currently this is a no-op because there is nothing to configure with GSSAPI.

	
configure_plain(domain: str [https://docs.python.org/3/library/stdtypes.html#str] = '*', passwords: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Configure PLAIN authentication for a given domain.

PLAIN authentication uses a plain-text password file.
To cover all domains, use “*”.
You can modify the password file at any time; it is reloaded automatically.

	
context: Context

	

	
credentials_providers: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	

	
curve_user_id(client_public_key: bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Return the User-Id corresponding to a CURVE client’s public key

Default implementation uses the z85-encoding of the public key.

Override to define a custom mapping of public key : user-id

This is only called on successful authentication.

	Parameters:

	client_public_key (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The client public key used for the given message

	Returns:

	user_id – The user ID as text

	Return type:

	unicode

	
deny(*addresses: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Deny IP address(es).

Addresses not explicitly denied will be allowed to continue with authentication.

deny is mutually exclusive with allow.

	
encoding: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
async handle_zap_message(msg: List [https://docs.python.org/3/library/typing.html#typing.List][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]])

	Perform ZAP authentication

	
log: Any [https://docs.python.org/3/library/typing.html#typing.Any]

	

	
passwords: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]

	

	
start() → None [https://docs.python.org/3/library/constants.html#None]

	Create and bind the ZAP socket

	
stop() → None [https://docs.python.org/3/library/constants.html#None]

	Close the ZAP socket

	
zap_socket: Socket

	

Functions

	
zmq.auth.create_certificates(key_dir: str [https://docs.python.org/3/library/stdtypes.html#str] | PathLike [https://docs.python.org/3/library/os.html#os.PathLike], name: str [https://docs.python.org/3/library/stdtypes.html#str], metadata: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None] = None) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	Create zmq certificates.

Returns the file paths to the public and secret certificate files.

	
zmq.auth.load_certificate(filename: str [https://docs.python.org/3/library/stdtypes.html#str] | PathLike [https://docs.python.org/3/library/os.html#os.PathLike]) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][bytes [https://docs.python.org/3/library/stdtypes.html#bytes], bytes [https://docs.python.org/3/library/stdtypes.html#bytes] | None [https://docs.python.org/3/library/constants.html#None]]

	Load public and secret key from a zmq certificate.

Returns (public_key, secret_key)

If the certificate file only contains the public key,
secret_key will be None.

If there is no public key found in the file, ValueError will be raised.

	
zmq.auth.load_certificates(directory: str [https://docs.python.org/3/library/stdtypes.html#str] | PathLike [https://docs.python.org/3/library/os.html#os.PathLike] = '.') → Dict [https://docs.python.org/3/library/typing.html#typing.Dict][bytes [https://docs.python.org/3/library/stdtypes.html#bytes], bool [https://docs.python.org/3/library/functions.html#bool]]

	Load public keys from all certificates in a directory

auth.asyncio

Module: zmq.auth.asyncio

ZAP Authenticator integrated with the asyncio IO loop.

Added in version 15.2.

Classes

AsyncioAuthenticator

	
class zmq.auth.asyncio.AsyncioAuthenticator(context: Context | None [https://docs.python.org/3/library/constants.html#None] = None, loop: Any [https://docs.python.org/3/library/typing.html#typing.Any] = None, encoding: str [https://docs.python.org/3/library/stdtypes.html#str] = 'utf-8', log: Any [https://docs.python.org/3/library/typing.html#typing.Any] = None)

	ZAP authentication for use in the asyncio IO loop

	
allow(*addresses: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Allow IP address(es).

Connections from addresses not explicitly allowed will be rejected.

	For NULL, all clients from this address will be accepted.

	For real auth setups, they will be allowed to continue with authentication.

allow is mutually exclusive with deny.

	
allow_any: bool [https://docs.python.org/3/library/functions.html#bool]

	

	
certs: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Dict[bytes [https://docs.python.org/3/library/stdtypes.html#bytes], Any]]

	

	
configure_curve(domain: str [https://docs.python.org/3/library/stdtypes.html#str] = '*', location: str [https://docs.python.org/3/library/stdtypes.html#str] | PathLike [https://docs.python.org/3/library/os.html#os.PathLike] = '.') → None [https://docs.python.org/3/library/constants.html#None]

	Configure CURVE authentication for a given domain.

CURVE authentication uses a directory that holds all public client certificates,
i.e. their public keys.

To cover all domains, use “*”.

You can add and remove certificates in that directory at any time. configure_curve must be called
every time certificates are added or removed, in order to update the Authenticator’s state

To allow all client keys without checking, specify CURVE_ALLOW_ANY for the location.

	
configure_curve_callback(domain: str [https://docs.python.org/3/library/stdtypes.html#str] = '*', credentials_provider: Any [https://docs.python.org/3/library/typing.html#typing.Any] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Configure CURVE authentication for a given domain.

CURVE authentication using a callback function validating
the client public key according to a custom mechanism, e.g. checking the
key against records in a db. credentials_provider is an object of a class which
implements a callback method accepting two parameters (domain and key), e.g.:

class CredentialsProvider(object):

 def __init__(self):
 ...e.g. db connection

 def callback(self, domain, key):
 valid = ...lookup key and/or domain in db
 if valid:
 logging.info('Authorizing: {0}, {1}'.format(domain, key))
 return True
 else:
 logging.warning('NOT Authorizing: {0}, {1}'.format(domain, key))
 return False

To cover all domains, use “*”.

	
configure_gssapi(domain: str [https://docs.python.org/3/library/stdtypes.html#str] = '*', location: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Configure GSSAPI authentication

Currently this is a no-op because there is nothing to configure with GSSAPI.

	
configure_plain(domain: str [https://docs.python.org/3/library/stdtypes.html#str] = '*', passwords: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Configure PLAIN authentication for a given domain.

PLAIN authentication uses a plain-text password file.
To cover all domains, use “*”.
You can modify the password file at any time; it is reloaded automatically.

	
context: zmq.Context

	

	
credentials_providers: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]

	

	
curve_user_id(client_public_key: bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Return the User-Id corresponding to a CURVE client’s public key

Default implementation uses the z85-encoding of the public key.

Override to define a custom mapping of public key : user-id

This is only called on successful authentication.

	Parameters:

	client_public_key (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The client public key used for the given message

	Returns:

	user_id – The user ID as text

	Return type:

	unicode

	
deny(*addresses: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Deny IP address(es).

Addresses not explicitly denied will be allowed to continue with authentication.

deny is mutually exclusive with allow.

	
encoding: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
async handle_zap_message(msg: List [https://docs.python.org/3/library/typing.html#typing.List][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]])

	Perform ZAP authentication

	
log: Any

	

	
passwords: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]

	

	
start() → None [https://docs.python.org/3/library/constants.html#None]

	Start ZAP authentication

	
stop() → None [https://docs.python.org/3/library/constants.html#None]

	Stop ZAP authentication

	
zap_socket: zmq.Socket

	

auth.thread

Module: zmq.auth.thread

ZAP Authenticator in a Python Thread.

Added in version 14.1.

Classes

ThreadAuthenticator

	
class zmq.auth.thread.ThreadAuthenticator(context: Context | None [https://docs.python.org/3/library/constants.html#None] = None, encoding: str [https://docs.python.org/3/library/stdtypes.html#str] = 'utf-8', log: Any [https://docs.python.org/3/library/typing.html#typing.Any] = None)

	Run ZAP authentication in a background thread

	
allow(*addresses: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Allow IP address(es).

Connections from addresses not explicitly allowed will be rejected.

	For NULL, all clients from this address will be accepted.

	For real auth setups, they will be allowed to continue with authentication.

allow is mutually exclusive with deny.

	
allow_any: bool [https://docs.python.org/3/library/functions.html#bool]

	

	
certs: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Dict[bytes [https://docs.python.org/3/library/stdtypes.html#bytes], Any]]

	

	
configure_curve(domain: str [https://docs.python.org/3/library/stdtypes.html#str] = '*', location: str [https://docs.python.org/3/library/stdtypes.html#str] | PathLike [https://docs.python.org/3/library/os.html#os.PathLike] = '.') → None [https://docs.python.org/3/library/constants.html#None]

	Configure CURVE authentication for a given domain.

CURVE authentication uses a directory that holds all public client certificates,
i.e. their public keys.

To cover all domains, use “*”.

You can add and remove certificates in that directory at any time. configure_curve must be called
every time certificates are added or removed, in order to update the Authenticator’s state

To allow all client keys without checking, specify CURVE_ALLOW_ANY for the location.

	
configure_curve_callback(domain: str [https://docs.python.org/3/library/stdtypes.html#str] = '*', credentials_provider: Any [https://docs.python.org/3/library/typing.html#typing.Any] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Configure CURVE authentication for a given domain.

CURVE authentication using a callback function validating
the client public key according to a custom mechanism, e.g. checking the
key against records in a db. credentials_provider is an object of a class which
implements a callback method accepting two parameters (domain and key), e.g.:

class CredentialsProvider(object):

 def __init__(self):
 ...e.g. db connection

 def callback(self, domain, key):
 valid = ...lookup key and/or domain in db
 if valid:
 logging.info('Authorizing: {0}, {1}'.format(domain, key))
 return True
 else:
 logging.warning('NOT Authorizing: {0}, {1}'.format(domain, key))
 return False

To cover all domains, use “*”.

	
configure_gssapi(domain: str [https://docs.python.org/3/library/stdtypes.html#str] = '*', location: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Configure GSSAPI authentication

Currently this is a no-op because there is nothing to configure with GSSAPI.

	
configure_plain(domain: str [https://docs.python.org/3/library/stdtypes.html#str] = '*', passwords: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Configure PLAIN authentication for a given domain.

PLAIN authentication uses a plain-text password file.
To cover all domains, use “*”.
You can modify the password file at any time; it is reloaded automatically.

	
context: zmq.Context

	

	
credentials_providers: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]

	

	
curve_user_id(client_public_key: bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Return the User-Id corresponding to a CURVE client’s public key

Default implementation uses the z85-encoding of the public key.

Override to define a custom mapping of public key : user-id

This is only called on successful authentication.

	Parameters:

	client_public_key (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The client public key used for the given message

	Returns:

	user_id – The user ID as text

	Return type:

	unicode

	
deny(*addresses: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Deny IP address(es).

Addresses not explicitly denied will be allowed to continue with authentication.

deny is mutually exclusive with allow.

	
encoding: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
async handle_zap_message(msg: List [https://docs.python.org/3/library/typing.html#typing.List][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]])

	Perform ZAP authentication

	
is_alive() → bool [https://docs.python.org/3/library/functions.html#bool]

	Is the ZAP thread currently running?

	
log: Any

	

	
passwords: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]

	

	
pipe: zmq.Socket

	

	
pipe_endpoint: str [https://docs.python.org/3/library/stdtypes.html#str] = ''

	

	
start() → None [https://docs.python.org/3/library/constants.html#None]

	Start the authentication thread

	
stop() → None [https://docs.python.org/3/library/constants.html#None]

	Stop the authentication thread

	
thread: AuthenticationThread

	

	
zap_socket: zmq.Socket

	

	
class zmq.auth.thread.AuthenticationThread(authenticator: Authenticator, pipe: Socket)

	A Thread for running a zmq Authenticator

This is run in the background by ThreadAuthenticator

auth.ioloop

Module: :mod}`zmq.auth.ioloop`

This module is deprecated in pyzmq 25.
Use zmq.auth.asyncio.

log.handlers

Module: zmq.log.handlers

pyzmq logging handlers.

This mainly defines the PUBHandler object for publishing logging messages over
a zmq.PUB socket.

The PUBHandler can be used with the regular logging module, as in:

>>> import logging
>>> handler = PUBHandler('tcp://127.0.0.1:12345')
>>> handler.root_topic = 'foo'
>>> logger = logging.getLogger('foobar')
>>> logger.setLevel(logging.DEBUG)
>>> logger.addHandler(handler)

Or using dictConfig, as in:

>>> from logging.config import dictConfig
>>> socket = Context.instance().socket(PUB)
>>> socket.connect('tcp://127.0.0.1:12345')
>>> dictConfig({
>>> 'version': 1,
>>> 'handlers': {
>>> 'zmq': {
>>> 'class': 'zmq.log.handlers.PUBHandler',
>>> 'level': logging.DEBUG,
>>> 'root_topic': 'foo',
>>> 'interface_or_socket': socket
>>> }
>>> },
>>> 'root': {
>>> 'level': 'DEBUG',
>>> 'handlers': ['zmq'],
>>> }
>>> })

After this point, all messages logged by logger will be published on the
PUB socket.

Code adapted from StarCluster:

https://github.com/jtriley/StarCluster/blob/StarCluster-0.91/starcluster/logger.py

Classes

PUBHandler

	
class zmq.log.handlers.PUBHandler(interface_or_socket: str [https://docs.python.org/3/library/stdtypes.html#str] | Socket, context: Context | None [https://docs.python.org/3/library/constants.html#None] = None, root_topic: str [https://docs.python.org/3/library/stdtypes.html#str] = '')

	A basic logging handler that emits log messages through a PUB socket.

Takes a PUB socket already bound to interfaces or an interface to bind to.

Example:

sock = context.socket(zmq.PUB)
sock.bind('inproc://log')
handler = PUBHandler(sock)

Or:

handler = PUBHandler('inproc://loc')

These are equivalent.

Log messages handled by this handler are broadcast with ZMQ topics
this.root_topic comes first, followed by the log level
(DEBUG,INFO,etc.), followed by any additional subtopics specified in the
message by: log.debug(“subtopic.subsub::the real message”)

	
acquire()

	Acquire the I/O thread lock.

	
addFilter(filter)

	Add the specified filter to this handler.

	
close()

	Tidy up any resources used by the handler.

This version removes the handler from an internal map of handlers,
_handlers, which is used for handler lookup by name. Subclasses
should ensure that this gets called from overridden close()
methods.

	
createLock()

	Acquire a thread lock for serializing access to the underlying I/O.

	
ctx: Context

	

	
emit(record)

	Emit a log message on my socket.

	
filter(record)

	Determine if a record is loggable by consulting all the filters.

The default is to allow the record to be logged; any filter can veto
this and the record is then dropped. Returns a zero value if a record
is to be dropped, else non-zero.

Changed in version 3.2: Allow filters to be just callables.

	
flush()

	Ensure all logging output has been flushed.

This version does nothing and is intended to be implemented by
subclasses.

	
format(record)

	Format a record.

	
get_name()

	

	
handle(record)

	Conditionally emit the specified logging record.

Emission depends on filters which may have been added to the handler.
Wrap the actual emission of the record with acquisition/release of
the I/O thread lock. Returns whether the filter passed the record for
emission.

	
handleError(record)

	Handle errors which occur during an emit() call.

This method should be called from handlers when an exception is
encountered during an emit() call. If raiseExceptions is false,
exceptions get silently ignored. This is what is mostly wanted
for a logging system - most users will not care about errors in
the logging system, they are more interested in application errors.
You could, however, replace this with a custom handler if you wish.
The record which was being processed is passed in to this method.

	
property name

	

	
release()

	Release the I/O thread lock.

	
removeFilter(filter)

	Remove the specified filter from this handler.

	
property root_topic: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
setFormatter(fmt, level=0)

	Set the Formatter for this handler.

If no level is provided, the same format is used for all levels. This
will overwrite all selective formatters set in the object constructor.

	
setLevel(level)

	Set the logging level of this handler. level must be an int or a str.

	
setRootTopic(root_topic: str [https://docs.python.org/3/library/stdtypes.html#str])

	Set the root topic for this handler.

This value is prepended to all messages published by this handler, and it
defaults to the empty string ‘’. When you subscribe to this socket, you must
set your subscription to an empty string, or to at least the first letter of
the binary representation of this string to ensure you receive any messages
from this handler.

If you use the default empty string root topic, messages will begin with
the binary representation of the log level string (INFO, WARN, etc.).
Note that ZMQ SUB sockets can have multiple subscriptions.

	
set_name(name)

	

	
socket: Socket

	

TopicLogger

	
class zmq.log.handlers.TopicLogger(name, level=0)

	A simple wrapper that takes an additional argument to log methods.

All the regular methods exist, but instead of one msg argument, two
arguments: topic, msg are passed.

That is:

logger.debug('msg')

Would become:

logger.debug('topic.sub', 'msg')

	
addFilter(filter)

	Add the specified filter to this handler.

	
addHandler(hdlr)

	Add the specified handler to this logger.

	
callHandlers(record)

	Pass a record to all relevant handlers.

Loop through all handlers for this logger and its parents in the
logger hierarchy. If no handler was found, output a one-off error
message to sys.stderr. Stop searching up the hierarchy whenever a
logger with the “propagate” attribute set to zero is found - that
will be the last logger whose handlers are called.

	
critical(level, topic, msg, *args, **kwargs)

	Log ‘msg % args’ with severity ‘CRITICAL’.

To pass exception information, use the keyword argument exc_info with
a true value, e.g.

logger.critical(“Houston, we have a %s”, “major disaster”, exc_info=1)

	
debug(level, topic, msg, *args, **kwargs)

	Log ‘msg % args’ with severity ‘DEBUG’.

To pass exception information, use the keyword argument exc_info with
a true value, e.g.

logger.debug(“Houston, we have a %s”, “thorny problem”, exc_info=1)

	
error(level, topic, msg, *args, **kwargs)

	Log ‘msg % args’ with severity ‘ERROR’.

To pass exception information, use the keyword argument exc_info with
a true value, e.g.

logger.error(“Houston, we have a %s”, “major problem”, exc_info=1)

	
exception(msg, *args, exc_info=True, **kwargs)

	Convenience method for logging an ERROR with exception information.

	
fatal(level, topic, msg, *args, **kwargs)

	Don’t use this method, use critical() instead.

	
filter(record)

	Determine if a record is loggable by consulting all the filters.

The default is to allow the record to be logged; any filter can veto
this and the record is then dropped. Returns a zero value if a record
is to be dropped, else non-zero.

Changed in version 3.2: Allow filters to be just callables.

	
findCaller(stack_info=False, stacklevel=1)

	Find the stack frame of the caller so that we can note the source
file name, line number and function name.

	
getChild(suffix)

	Get a logger which is a descendant to this one.

This is a convenience method, such that

logging.getLogger(‘abc’).getChild(‘def.ghi’)

is the same as

logging.getLogger(‘abc.def.ghi’)

It’s useful, for example, when the parent logger is named using
__name__ rather than a literal string.

	
getEffectiveLevel()

	Get the effective level for this logger.

Loop through this logger and its parents in the logger hierarchy,
looking for a non-zero logging level. Return the first one found.

	
handle(record)

	Call the handlers for the specified record.

This method is used for unpickled records received from a socket, as
well as those created locally. Logger-level filtering is applied.

	
hasHandlers()

	See if this logger has any handlers configured.

Loop through all handlers for this logger and its parents in the
logger hierarchy. Return True if a handler was found, else False.
Stop searching up the hierarchy whenever a logger with the “propagate”
attribute set to zero is found - that will be the last logger which
is checked for the existence of handlers.

	
info(msg, *args, **kwargs)

	Log ‘msg % args’ with severity ‘INFO’.

To pass exception information, use the keyword argument exc_info with
a true value, e.g.

logger.info(“Houston, we have a %s”, “interesting problem”, exc_info=1)

	
isEnabledFor(level)

	Is this logger enabled for level ‘level’?

	
log(level, topic, msg, *args, **kwargs)

	Log ‘msg % args’ with level and topic.

To pass exception information, use the keyword argument exc_info
with a True value:

logger.log(level, "zmq.fun", "We have a %s",
 "mysterious problem", exc_info=1)

	
makeRecord(name, level, fn, lno, msg, args, exc_info, func=None, extra=None, sinfo=None)

	A factory method which can be overridden in subclasses to create
specialized LogRecords.

	
manager = <logging.Manager object>

	

	
removeFilter(filter)

	Remove the specified filter from this handler.

	
removeHandler(hdlr)

	Remove the specified handler from this logger.

	
root = <RootLogger root (WARNING)>

	

	
setLevel(level)

	Set the logging level of this logger. level must be an int or a str.

	
warn(level, topic, msg, *args, **kwargs)

	

	
warning(level, topic, msg, *args, **kwargs)

	Log ‘msg % args’ with severity ‘WARNING’.

To pass exception information, use the keyword argument exc_info with
a true value, e.g.

logger.warning(“Houston, we have a %s”, “bit of a problem”, exc_info=1)

ssh.tunnel

Module: zmq.ssh.tunnel

Basic ssh tunnel utilities, and convenience functions for tunneling
zeromq connections.

Functions

	
zmq.ssh.tunnel.open_tunnel(addr, server, keyfile=None, password=None, paramiko=None, timeout=60)

	Open a tunneled connection from a 0MQ url.

For use inside tunnel_connection.

	Returns:

	(url, tunnel) – The 0MQ url that has been forwarded, and the tunnel object

	Return type:

	(str [https://docs.python.org/3/library/stdtypes.html#str], object [https://docs.python.org/3/library/functions.html#object])

	
zmq.ssh.tunnel.select_random_ports(n)

	Select and return n random ports that are available.

	
zmq.ssh.tunnel.try_passwordless_ssh(server, keyfile, paramiko=None)

	Attempt to make an ssh connection without a password.
This is mainly used for requiring password input only once
when many tunnels may be connected to the same server.

If paramiko is None, the default for the platform is chosen.

	
zmq.ssh.tunnel.tunnel_connection(socket, addr, server, keyfile=None, password=None, paramiko=None, timeout=60)

	Connect a socket to an address via an ssh tunnel.

This is a wrapper for socket.connect(addr), when addr is not accessible
from the local machine. It simply creates an ssh tunnel using the remaining args,
and calls socket.connect(’tcp://localhost:lport’) where lport is the randomly
selected local port of the tunnel.

utils.jsonapi

Module: zmq.utils.jsonapi

JSON serialize to/from utf8 bytes

Changed in version 22.2: Remove optional imports of different JSON implementations.
Now that we require recent Python, unconditionally use the standard library.
Custom JSON libraries can be used via custom serialization functions.

Functions

	
zmq.utils.jsonapi.dumps(o: Any [https://docs.python.org/3/library/typing.html#typing.Any], **kwargs) → bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Serialize object to JSON bytes (utf-8).

Keyword arguments are passed along to json.dumps() [https://docs.python.org/3/library/json.html#json.dumps].

	
zmq.utils.jsonapi.loads(s: bytes [https://docs.python.org/3/library/stdtypes.html#bytes] | str [https://docs.python.org/3/library/stdtypes.html#str], **kwargs) → dict [https://docs.python.org/3/library/stdtypes.html#dict] | list [https://docs.python.org/3/library/stdtypes.html#list] | str [https://docs.python.org/3/library/stdtypes.html#str] | int [https://docs.python.org/3/library/functions.html#int] | float [https://docs.python.org/3/library/functions.html#float]

	Load object from JSON bytes (utf-8).

Keyword arguments are passed along to json.loads() [https://docs.python.org/3/library/json.html#json.loads].

utils.monitor

Module: zmq.utils.monitor

Module holding utility and convenience functions for zmq event monitoring.

Functions

	
zmq.utils.monitor.parse_monitor_message(msg: list [https://docs.python.org/3/library/stdtypes.html#list][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]) → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	decode zmq_monitor event messages.

	Parameters:

	msg (list [https://docs.python.org/3/library/stdtypes.html#list](bytes [https://docs.python.org/3/library/stdtypes.html#bytes])) – zmq multipart message that has arrived on a monitor PAIR socket.

First frame is:

16 bit event id
32 bit event value
no padding

Second frame is the endpoint as a bytestring

	Returns:

	event – event description as dict with the keys event, value, and endpoint.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
zmq.utils.monitor.recv_monitor_message(socket: Socket, flags: int [https://docs.python.org/3/library/functions.html#int] = 0) → Awaitable [https://docs.python.org/3/library/typing.html#typing.Awaitable][dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	
zmq.utils.monitor.recv_monitor_message(socket: Socket[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]], flags: int [https://docs.python.org/3/library/functions.html#int] = 0) → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Receive and decode the given raw message from the monitoring socket and return a dict.

Requires libzmq ≥ 4.0

	The returned dict will have the following entries:
	
	eventint
	the event id as described in libzmq.zmq_socket_monitor

	valueint
	the event value associated with the event, see libzmq.zmq_socket_monitor

	endpointstr
	the affected endpoint

Changed in version 23.1: Support for async sockets added.
When called with a async socket,
returns an awaitable for the monitor message.

	Parameters:

	
	socket (zmq.Socket) – The PAIR socket (created by other.get_monitor_socket()) on which to recv the message

	flags (int [https://docs.python.org/3/library/functions.html#int]) – standard zmq recv flags

	Returns:

	event – event description as dict with the keys event, value, and endpoint.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

utils.z85

Module: zmq.utils.z85

Python implementation of Z85 85-bit encoding

Z85 encoding is a plaintext encoding for a bytestring interpreted as 32bit integers.
Since the chunks are 32bit, a bytestring must be a multiple of 4 bytes.
See ZMQ RFC 32 for details.

Functions

	
zmq.utils.z85.decode(z85bytes)

	decode Z85 bytes to raw bytes, accepts ASCII string

	
zmq.utils.z85.encode(rawbytes)

	encode raw bytes into Z85

utils.win32

Module: zmq.utils.win32

Win32 compatibility utilities.

allow_interrupt

	
class zmq.utils.win32.allow_interrupt(action: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None [https://docs.python.org/3/library/constants.html#None] = None)

	Utility for fixing CTRL-C events on Windows.

On Windows, the Python interpreter intercepts CTRL-C events in order to
translate them into KeyboardInterrupt exceptions. It (presumably)
does this by setting a flag in its “console control handler” and
checking it later at a convenient location in the interpreter.

However, when the Python interpreter is blocked waiting for the ZMQ
poll operation to complete, it must wait for ZMQ’s select()
operation to complete before translating the CTRL-C event into the
KeyboardInterrupt exception.

The only way to fix this seems to be to add our own “console control
handler” and perform some application-defined operation that will
unblock the ZMQ polling operation in order to force ZMQ to pass control
back to the Python interpreter.

This context manager performs all that Windows-y stuff, providing you
with a hook that is called when a CTRL-C event is intercepted. This
hook allows you to unblock your ZMQ poll operation immediately, which
will then result in the expected KeyboardInterrupt exception.

Without this context manager, your ZMQ-based application will not
respond normally to CTRL-C events on Windows. If a CTRL-C event occurs
while blocked on ZMQ socket polling, the translation to a
KeyboardInterrupt exception will be delayed until the I/O completes
and control returns to the Python interpreter (this may never happen if
you use an infinite timeout).

A no-op implementation is provided on non-Win32 systems to avoid the
application from having to conditionally use it.

Example usage:

def stop_my_application():
 # ...

with allow_interrupt(stop_my_application):
 # main polling loop.

In a typical ZMQ application, you would use the “self pipe trick” to
send message to a PAIR socket in order to interrupt your blocking
socket polling operation.

In a Tornado event loop, you can use the IOLoop.stop method to
unblock your I/O loop.

Changes in PyZMQ

This is a coarse summary of changes in pyzmq versions.
For a full changelog, consult the git log [https://github.com/zeromq/pyzmq/commits].

26

26.0.2

	When bundling libsodium, download from libsodium’s releases on GitHub instead of download.libsodium.org,
which appears to error frequently.

26.0.1

	Fix install from source with cmake < 3.21

26.0.0

pyzmq 26 is a small release, but with some big changes hopefully nobody will notice,
except for some users (especially on Windows) where pyzmq releases did not work.

The highlights are:

	The Cython backend has been rewritten using Cython 3’s pure Python mode.

	The build system has been rewritten to use CMake via scikit-build-core [https://scikit-build-core.readthedocs.io] instead of setuptools (setup.py is gone!).

	Bundled libzmq is updated to 4.3.5, which changes its license from LGPL to MPL.

This means:

	Cython >=3.0 is now a build requirement (if omitted, source distributions should still build from Cython-generated .c files without any Cython present)

	pyzmq’s Cython backend is a single extension module, which should improve install size, import time, compile time, etc.

	pyzmq’s Cython backend is now BSD-licensed, matching the rest of pyzmq.

	The license of the libzmq library (included in pyzmq wheels) starting with 4.3.5 is now Mozilla Public License 2.0 (MPL-2.0).

	when building pyzmq from source and it falls back on bundled libzmq, libzmq and libsodium are built as static libraries using their own build systems (CMake for libzmq, autotools for libsodium except on Windows where it uses msbuild)
rather than bundling libzmq with tweetnacl as a Python Extension.

Since the new build system uses libzmq and libsodium’s own build systems, evaluated at install time, building pyzmq with bundled libzmq from source should be much more likely to succeed on a variety of platforms than the previous method, where their build system was skipped and approximated as a Python extension.
But I would also be very surprised if I didn’t break anything in the process of replacing 14 years of setup.py from scratch, especially cases like cross-compiling.
Please report [https://github.com/zeromq/pyzmq/issues/new] any issues you encounter building pyzmq.

See build docs for more info.

New:

	Experimental support for wheels on windows-arm64

	Socket.bind('tcp://ip:0') can be used as a context manager to bind to a random port.
The resulting URL can be retrieved as socket.last_endpoint.

	Add SyncSocket and SyncContext type aliases for the default Socket/Context implementations,
since the base classes are Generics, type-wise.
These are type aliases only to be used in type checking, not actual classes.

Enhancements:

	repr(Frame) now produces a nice repr, summarizing Frame contents (without getting too large),
e.g. <zmq.Frame(b'abcdefghijkl'...52B)>

Breaking changes:

	str(Frame) no longer returns the whole frame contents interpreted as utf8-bytes.
Instead, it returns the new summarized repr,
which produces more logical results with print, etc.
bytes(Frame) remains unchanged, and utf-8 text strings can still be produced with:
bytes(Frame).decode("utf8"),
which works in all versions of pyzmq and does the same thing.

	Stop building Python 3.7 wheels for manylinux1, which reached EOL in January, 2022. The new build system doesn’t seem to be able to find cmake in that environment.

25

25.1.2

	Fix builds with some recent compilers and bundled libzmq

	Fix builds with upcoming Cython 3.1

25.1.1

25.1.1 is the first stable release with Python 3.12 wheels.

Changes:

	Allow Cython 0.29.35 to build Python 3.12 wheels (no longer require Cython 3)

Bugs fixed:

	Fix builds on Solaris by including generated platform.hpp

	Cleanup futures in Socket.poll() that are cancelled and never return

	Fix builds with -j when numpy is present in the build env

25.1.0

pyzmq 25.1 mostly changes some packaging details of pyzmq, including support for installation from source on Python 3.12 beta 1.

Enhancements:

	Include address in error message when bind/connect fail.

Packaging changes:

	Fix inclusion of some test files in source distributions.

	Add Cython as a build-time dependency in build-system.requires metadata, following current recommendations [https://groups.google.com/g/cython-users/c/ZqKFQmS0JdA/m/1FrK1ApYBAAJ] of the Cython maintainers.
We still ship generated Cython sources in source distributions, so it is not a strict dependency for packagers using --no-build-isolation, but pip will install Cython as part of building pyzmq from source.
This makes it more likely that past pyzmq releases will install on future Python releases, which often require an update to Cython but not pyzmq itself.
For Python 3.12, Cython >=3.0.0b3 is required.

25.0.2

	Fix handling of shadow sockets in ZMQStream when the original sockets have been closed. A regression in 25.0.0, seen with jupyter-client 7.

25.0.1

Tiny bugfix release that should only affect users of PUBHandler or pyzmq repackagers.

	Fix handling of custom Message types in PUBHandler

	Small lint fixes to satisfy changes in mypy

	License files have been renamed to more standard LICENSE.BSD, LICENSE.LESSER to appease some license auto-detect tools.

25.0.0

New:

	Added socket_class argument to zmq.Context.socket()

	Support shadowing sockets with socket objects,
not just via address, e.g. zmq.asyncio.Socket(other_socket).
Shadowing an object preserves a reference to the original,
unlike shadowing via address.

	in zmq.auth, CredentialsProvider callbacks may now be async.

	ZMQStream callbacks may now be async.

	Add zmq.ReconnectStop draft constants.

	Add manylinux_2_28 wheels for x86_64 CPython 3.10, 3.11, and PyPy 3.9 (these are in addition to not instead of the manylinux_2014 wheels).

Fixed:

	When ZMQStream is given an async socket,
it now warns and hooks up events correctly with the underlying socket, so the callback gets the received message,
instead of sending the callback the incorrect arguments.

	Fixed toml parse error in pyproject.toml,
when installing from source with very old pip.

	Removed expressed dependency on py when running with pypy,
which hasn’t been used in some time.

Deprecated:

	zmq.auth.ioloop.IOLoopAuthenticator is deprecated in favor of zmq.auth.asyncio.AsyncioAuthenticator

	As part of migrating toward modern pytest, zmq.tests.BaseZMQTestCase is deprecated and should not be used outside pyzmq.

	python setup.py test is deprecated as a way to launch the tests.
Just use pytest.

Removed:

	Bundled subset of tornado’s IOLoop (deprecated since pyzmq 17) is removed,
so ZMQStream cannot be used without an actual install of tornado.

	Remove support for tornado 4,
meaning tornado is always assumed to run on asyncio.

24

24.0.1

	Fix several possible resource warnings and deprecation warnings
when cleaning up contexts and sockets,
especially in pyzmq’s own tests and when implicit teardown of objects is happening during process teardown.

24.0.0

pyzmq 24 has two breaking changes (one only on Windows), though they are not likely to affect most users.

Breaking changes:

	Due to a libzmq bug causing unavoidable crashes for some users,
Windows wheels no longer bundle libzmq with AF_UNIX support.
In order to enable AF_UNIX on Windows, pyzmq must be built from source,
linking an appropriate build of libzmq (e.g. libzmq-v142).
AF_UNIX support will be re-enabled in pyzmq wheels
when libzmq published fixed releases.

	Using a zmq.Context as a context manager or deleting a context without closing it now calls zmq.Context.destroy() at exit instead of zmq.Context.term().
This will have little effect on most users,
but changes what happens when user bugs result in a context being implicitly destroyed while sockets are left open.
In almost all cases, this will turn what used to be a hang into a warning.
However, there may be some cases where sockets are actively used in threads,
which could result in a crash.
To use sockets across threads, it is critical to properly and explicitly close your contexts and sockets,
which will always avoid this issue.

23.2.1

Improvements:

	First release with wheels for Python 3.11 (thanks cibuildwheel!).

	linux aarch64 wheels now bundle the same libzmq (4.3.4) as all other builds,
thanks to switching to native arm builds on CircleCI.

Fixes:

	Some type annotation fixes in devices.

23.2.0

Improvements:

	Use zmq.Event enums in parse_monitor_message for nicer reprs

Fixes:

	Fix building bundled libzmq with ZMQ_DRAFT_API=1

	Fix subclassing zmq.Context with additional arguments in the constructor.
Subclasses may now have full control over the signature,
rather than purely adding keyword-only arguments

	Typos and other small fixes

23.1.0

Fixing some regressions in 23.0:

	Fix global name of zmq.EVENT_HANDSHAKE_* constants

	Fix constants missing when using import zmq.green as zmq

Compatibility fixes:

	zmq.utils.monitor.recv_monitor_message() now supports async Sockets.

	Fix build with mingw

23.0.0

Changes:

	all zmq constants are now available as Python enums
(e.g. zmq.SocketType.PULL, zmq.SocketOption.IDENTITY),
generated statically from zmq.h instead of at compile-time.
This means that checks for the presence of a constant (hasattr(zmq, 'RADIO'))
is not a valid check for the presence of a feature.
This practice has never been robust, but it may have worked sometimes.
Use direct checks via e.g. zmq.has() or zmq.zmq_version_info().

	A bit more type coverage of Context.term and Context.socket

Compatibility fixes:

	Remove all use of deprecated stdlib distutils

	Update to Cython 0.29.30 (required for Python 3.11 compatibility)

	Compatibility with Python 3.11.0b1

Maintenance changes:

	Switch to myst for docs

	Deprecate zmq.utils.strtypes, now unused

	Updates to autoformatting, linting

	New wheels for PyPy 3.9

	Manylinux wheels for CPython 3.10 are based on manylinux2014

22.3.0

Fixes:

	Fix strlcpy compilation issues on alpine, freebsd.
Adds new build-time dependency on packaging.

	In event-loop integration: warn instead of raise when triggering callback on a socket whose context has been closed.

	Bundled libzmq in wheels backport a patch to avoid crashes
due to inappropriate closing of libsodium’s random generator
when using CurveZMQ.

Changes:

	New ResourceWarnings when contexts and sockets are closed by garbage collection,
which can be a source of hangs and leaks (matches open files)

22.2.1

Fix bundling of wepoll on Windows.

22.2.0

New features:

	IPC support on Windows:
where available (64bit Windows wheels and bundled libzmq when compiling from source, via wepoll),
IPC should work on appropriate Windows versions.

	Nicer reprs of contexts and sockets

	Memory allocated by recv(copy=False) is no longer read-only

	asyncio: Always reference current loop instead of attaching to the current loop at instantiation time.
This fixes e.g. contexts and/or sockets instantiated prior to a call to asyncio.run.

	ssh: $PYZMQ_PARAMIKO_HOST_KEY_POLICY can be used to set the missing host key policy,
e.g. AutoAdd.

Fixes:

	Fix memory corruption in gevent integration

	Fix memoryview(zmq.Frame) with cffi backend

	Fix threadsafety issue when closing sockets

Changes:

	pypy Windows wheels are 64b-only, following an update in cibuildwheel 2.0

	deprecate zmq.utils.jsonapi and remove support for non-stdlib json implementations in send/recv_json.
Custom serialization methods should be used instead.

22.1.0

New features:

	asyncio: experimental support for Proactor eventloop if tornado 6.1 is available
by running a selector in a background thread.

Fixes:

	Windows: fix type of socket.FD option in win-amd64

	asyncio: Cancel timers when using HWM with async Sockets

Other changes:

	Windows: update bundled libzmq dll URLs for Windows.
Windows wheels no longer include concrt140.dll.

	adopt pre-commit for formatting, linting

22.0.3

	Fix fork-safety bug in garbage collection thread (regression in 20.0)
when using subprocesses.

	Start uploading universal wheels for ARM Macs.

22.0.2

	Add workaround for bug in DLL loading for Windows wheels with conda Python >= 3.8

22.0.1

	Fix type of Frame.bytes for non-copying recvs with CFFI backend (regression in 21.0)

	Add manylinux wheels for pypy

22.0.0

This is a major release due to changes in wheels and building on Windows.
Code changes from 21.0 are minimal.

	Some typing fixes

	Bump bundled libzmq to 4.3.4

	Strip unused symbols in manylinux wheels, resulting in dramatically smaller binaries.
This matches behavior in v20 and earlier.

	Windows CPython wheels bundle public libzmq binary builds,
instead of building libzmq as a Python Extension.
This means they include libsodium for the first time.

	Our own implementation of bundling libzmq into pyzmq on Windows is removed,
instead relying on delvewheel (or installations putting dlls on %PATH%) to bundle dependency dlls.

	The (new in 21.0) Windows wheels for PyPy likely require the Windows vcredist package.
This may have always been the case, but the delvewheel approach doesn’t seem to work.

	Windows + PyPy is now the only remaining case where a wheel has libzmq built as an Extension.
All other builds ship libzmq built using its own tooling,
which should result in better, more stable builds.

21.0.2

	Fix wheels on macOS older than 10.15 (sets MACOSX_DEPLOYMENT_TARGET to 10.9, matching wheel ABI tag).

21.0.1

pyzmq-21.0.1 only changes CI configuration for Windows wheels (built with VS2017 instead of VS2019),
fixing compatibility with some older Windows on all Pythons
and removing requirement of VC++ redistributable package on latest Windows and Python < 3.8.

There still appears to be a compatibility issue with Windows 7 that will be fixed ASAP.
Until then, you can pin pip install pyzmq<21.

There are no changes from 21.0.0 for other platforms.

21.0

pyzmq 21 is a major version bump because of dropped support for old Pythons and some changes in packaging.
CPython users should not face major compatibility issues if installation works at all :)
PyPy users may see issues with the new implementation of send/recv.
If you do, please report them!

The big changes are:

	drop support for Python 3.5. Python >= 3.6 is required

	mypy type stubs, which should improve static analysis of pyzmq,
especially for dynamically defined attributes such as zmq constants.
These are new! Let us know if you find any issues.

	support for zero-copy and sending bufferables with cffi backend.
This is experimental! Please report issues.

	More wheels!

	linux-aarch64 on Python 3.7-3.9

	wheels for pypy36, 37 on Linux and Windows (previously just mac)

We’ve totally redone the wheel-building setup, so let us know if you start seeing installation issues!

Packaging updates:

	Require Python >= 3.6, required for good type annotation support

	Wheels for macOS no longer build libzmq as a Python Extension,
instead ‘real’ libzmq is built and linked to libsodium,
bundled with delocate.
This matches the longstanding behavior of Linux wheels,
and should result in better performance.

	Add manylinux wheels for linux-aarch64. These bundle an older version of libzmq than the rest.

	Build wheels for python3.8, 3.9 with manylinux2010 instead of manylinux1.
Wheels for older Pythons will still be built on manylinux1.

	rework cffi backend in setup.py

	All wheels are built on GitHub Actions (most with cibuildwheel) instead of Min’s laptop (finally!).

New features:

	zero-copy support in CFFI backend (send(copy=False) now does something).

	Support sending any buffer-interface-providing objects in CFFI backend.

Bugs fixed:

	Errors during teardown of asyncio Sockets

	Missing MSVCP140.dll in Python 3.9 wheels on Windows,
causing vcruntime-redist package to be required to use the Python 3.9 wheels for pyzmq 20.0

20.0

20.0 is a major version bump because of dropped support for old Pythons and some changes in packaging,
but there are only small changes for users with relatively recent versions of Python.

Packaging updates:

	Update bundled libzmq to 4.3.3

	Drop support for Python < 3.5 (all versions of Python < 3.6 are EOL at time of release)

	Require setuptools to build from source

	Require Cython 0.29 to build from version control (sdists still ship .c files, so will never need Cython)

	Respect $PKG_CONFIG env for finding libzmq when building from source

New features:

	Socket.bind() and Socket.connect() can now be used as context managers.

Fixes:

	Better error when libzmq is bundled and fails to be loaded.

	Hold GIL while calling zmq_curve_ functions, which may fix apparent threadsafety issues.

19.0.2

	Regenerate Cython sources with 0.29.21 in sdists for compatibility with Python 3.9

	Handle underlying socket being closed in ZMQStream with warning instead of error

	Improvements to socket cleanup during process teardown

	Fix debug-builds on Windows

	Avoid importing ctypes during startup on Windows

	Documentation improvements

	Raise AttributeError instead of ZMQError(EINVAL) on attempts to read write-only attributes,
for compatibility with mocking

19.0.1

	Fix TypeError during garbage collection

	Fix compilation with some C++ compilers

	Fixes in tests and examples

19.0

	Cython backend: Build Cython extensions with language level “3str” (requires Cython 0.29)

	Cython backend: You can now cimport zmq

	Asyncio: Fix memory leak in Poller

	Log: Much improved logging in zmq.log.handlers (see Asynchronous Logging via PyZMQ)

	Log: add python -m zmq.log entrypoint

	Sources generated with Cython 0.29.15

18.1.1

	Fix race condition when shutting down ZAP thread while events are still processing (only affects tests)

	Publish wheels for Python 3.8 on all platforms

	Stop publishing wheels for Python 3.4 on Windows

	Sources generated with Cython 0.29.14

18.1.0

	Compatibility with Python 3.8 release candidate by regenerating Cython courses with Cython 0.29.13

	bump bundled libzmq to 4.3.2

	handle cancelled futures in asyncio

	make zmq.Context.instance() fork-safe

	fix errors in zmq.Context.destroy() when opening and closing many sockets

18.0.2

	Compatibility with Python 3.8 prerelease by regenerating Cython sources
with Cython 0.29.10.

	Fix language_level=2 in Cython sources, for compatibility with Cython 0.30

	Show missing path for ENOENT errors on ipc connections.

18.0.1

Fixes installation from source on non-unicode locales with Python 3.
There are no code changes in this release.

18.0.0

	Update bundled libzmq to 4.3.1 (fixes CVE-2019-6250)

	Added proxy_steerable() and zmq.devices.ProxySteerable

	Added bind_{in|out|mon}_to_random_port variants for proxy device methods

	Performance improvements for sends with asyncio

	Fix sending memoryviews/bytearrays with cffi backend

17.1.3

	Fix compatibility with tornado 6 (removal of stack_context)

17.1.2

	Fix possible hang when working with asyncio

	Remove some outdated workarounds for old Cython versions

	Fix some compilation with custom compilers

	Remove unneeded link of libstdc++ on PyPy

17.1.0

	Bump bundled libzmq to 4.2.5

	Improve tornado 5.0 compatibility
(use current() [https://www.tornadoweb.org/en/stable/ioloop.html#tornado.ioloop.IOLoop.current] instead of instance() [https://www.tornadoweb.org/en/stable/ioloop.html#tornado.ioloop.IOLoop.instance]
to get default loops in ZMQStream and .IOLoopAuthenticator)

	Add support for curve_public()

	Remove delayed import of json in send/recv_json

	Add Authenticator.configure_curve_callback()

	Various build fixes

	sdist sources generated with Cython 0.28.3

	Stop building wheels for Python 3.4, start building wheels for Python 3.7

17.0.0

	Add zmq.Socket.send_serialized() and zmq.Socket.recv_serialized()
for sending/receiving messages with custom serialization.

	Add zmq.Socket.copy_threshold and zmq.COPY_THRESHOLD.
Messages smaller than this are always copied, regardless of copy=False,
to avoid overhead of zero-copy bookkeeping on small messages.

	Added visible deprecation warnings to bundled tornado IOLoop.
Tornado eventloop integration shouldn’t be used without a proper tornado install
since pyzmq 14.

	Allow pyzmq asyncio/tornado integration to run without installing zmq_poll
implementation. The following methods and classes are deprecated and no longer required:

	zmq.eventloop.ioloop.install

	zmq.eventloop.ioloop.IOLoop

	zmq.asyncio.install

	zmq.asyncio.ZMQEventLoop

	Set RPATH correctly when building on macOS.

	Compatibility fixes with tornado 5.0.dev (may not be quite enough for 5.0 final,
which is not yet released as of pyzmq 17).

	Draft support for CLIENT-SERVER routing_id and group.

See also

Working with libzmq DRAFT sockets

16.0.4

	Regenerate Cython sources in sdists with Cython 0.27.3,
fixing builds on CPython 3.7.

	Add warning when using bundled tornado, which was deprecated too quietly in 14.x.

16.0.3

	Regenerate Cython sources in sdists with Cython 0.27.2,
fixing builds on CPython 3.7.

16.0.2

	Workaround bug in libzmq-4.2.0 causing EINVAL on poll.

16.0.1

	Fix erroneous EAGAIN that could happen on async sockets

	Bundle libzmq 4.1.6

16.0

	Support for Python 2.6 and Python 3.2 is dropped. For old Pythons, use pip install "pyzmq<16" to get the last version of pyzmq that supports these versions.

	Include zmq.h

	Deprecate zmq.Stopwatch. Native Python timing tools can be used instead.

	Better support for using pyzmq as a Cython library

	bundle zmq.h when pyzmq bundles libzmq as an extension

	add zmq.get_library_dirs() to find bundled libzmq

	Updates to setup.py for Cython 0.25 compatibility

	Various asyncio/future fixes:

	support raw sockets in pollers

	allow cancelling async sends

	Fix IOLoop.current() in zmq.green

15.4

	Load bundled libzmq extension with import rather than CDLL,
which should fix some manifest issues in certain cases on Windows.

	Avoid installing asyncio sources on Python 2, which confuses some tools that run python -m compileall, which reports errors on the Python 3-only files.

	Bundle msvcp.dll in Windows wheels on CPython 3.5,
which should fix wheel compatibility systems without Visual C++ 2015 redistributable.

	zmq.Context.instance() is now threadsafe.

	FIX: sync some behavior in zmq_poll and setting LINGER on close/destroy with the CFFI backend.

	PERF: resolve send/recv immediately if events are available in async Sockets

	Async Sockets (asyncio, tornado) now support send_json, send_pyobj, etc.

	add preliminary support for zmq.DRAFT_API reflecting ZMQ_BUILD_DRAFT_API,
which indicates whether new APIs in prereleases are available.

15.3

	Bump bundled libzmq to 4.1.5, using tweetnacl for bundled curve support instead of libsodium

	FIX: include .pxi includes in installation for consumers of Cython API

	FIX: various fixes in new async sockets

	Introduce zmq.decorators API for decorating functions to create sockets or contexts

	Add zmq.Socket.subscribe() and zmq.Socket.unsubscribe() methods to sockets, so that assignment is no longer needed for subscribing. Verbs should be methods!
Assignment is still supported for backward-compatibility.

	Accept text (unicode) input to z85 encoding, not just bytes

	zmq.Context.socket() forwards keyword arguments to the Socket constructor

15.2

	FIX: handle multiple events in a single register call in zmq.asyncio

	FIX: unicode/bytes bug in password prompt in zmq.ssh on Python 3

	FIX: workaround gevent monkeypatches in garbage collection thread

	update bundled minitornado from tornado-4.3.

	improved inspection by setting binding=True in cython compile options

	add asyncio Authenticator implementation in zmq.auth.asyncio

	workaround overflow bug in libzmq preventing receiving messages larger than MAX_INT

15.1

	FIX: Remove inadvertent tornado dependency when using zmq.asyncio

	FIX: 15.0 Python 3.5 wheels didn’t work on Windows

	Add GSSAPI support to Authenticators

	Support new constants defined in upcoming libzmq-4.2.dev

15.0

PyZMQ 15 adds Future-returning sockets and pollers for both asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio] and tornado.concurrent [https://www.tornadoweb.org/en/stable/concurrent.html#module-tornado.concurrent].

	add asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio] support via zmq.asyncio

	add tornado.concurrent [https://www.tornadoweb.org/en/stable/concurrent.html#module-tornado.concurrent] future support via zmq.eventloop.future

	trigger bundled libzmq if system libzmq is found to be < 3.
System libzmq 2 can be forced by explicitly requesting --zmq=/prefix/.

14.7.0

Changes:

	Update bundled libzmq to 4.1.2.

	Following the lead of Python 3.5 [https://www.python.org/dev/peps/pep-0475/],
interrupted system calls will be retried.

Fixes:

	Fixes for CFFI backend on Python 3 + support for PyPy 3.

	Verify types of all frames in send_multipart() before sending,
to avoid partial messages.

	Fix build on Windows when both debug and release versions of libzmq are found.

	Windows build fixes for Python 3.5.

14.6.0

Changes:

	improvements in zmq.Socket.bind_to_random_port():
: - use system to allocate ports by default

	catch EACCES on Windows

	include libsodium when building bundled libzmq on Windows (includes wheels on PyPI)

	pyzmq no longer bundles external libzmq when making a bdist.
You can use delocate [https://pypi.org/project/delocate/] to do this.

Bugfixes:

	add missing ndim on memoryviews of Frames

	allow copy.copy() [https://docs.python.org/3/library/copy.html#copy.copy] and copy.deepcopy() [https://docs.python.org/3/library/copy.html#copy.deepcopy] on Sockets, Contexts

14.5.0

Changes:

	use pickle.DEFAULT_PROTOCOL by default in send_pickle

	with the release of pip-6, OS X wheels are only marked as 10.6-intel,
indicating that they should be installable on any newer or single-arch Python.

	raise SSHException on failed check of host key

Bugfixes:

	fix method name in utils.wi32.allow_interrupt

	fork-related fixes in garbage collection thread

	add missing import in zmq.__init__, causing failure to import in some circumstances

14.4.1

Bugfixes for 14.4

	SyntaxError on Python 2.6 in zmq.ssh

	Handle possible bug in garbage collection after fork

14.4.0

New features:

	Experimental support for libzmq-4.1.0 rc (new constants, plus zmq.has()).

	Update bundled libzmq to 4.0.5

	Update bundled libsodium to 1.0.0

	Fixes for SSH dialogs when using zmq.ssh.tunnel to create tunnels

	More build/link/load fixes on OS X and Solaris

	Get Frame metadata via dict access (libzmq 4)

	Contexts and Sockets are context managers (term/close on __exit__)

	Add zmq.utils.win32.allow_interrupt context manager for catching SIGINT on Windows

Bugs fixed:

	Bundled libzmq should not trigger recompilation after install on PyPy

14.3.1

Note

pyzmq-14.3.1 is the last version to include bdists for Python 3.3

Minor bugfixes to pyzmq 14.3:

	Fixes to building bundled libzmq on OS X < 10.9

	Fixes to import-failure warnings on Python 3.4

	Fixes to tests

	Pull upstream fixes to zmq.ssh for ssh multiplexing

14.3.0

	PyZMQ no longer calls Socket.close() or Context.term() during process cleanup.
Changes to garbage collection in Python 3.4 make this impossible to do sensibly.

	ZMQStream.close() closes its socket immediately, rather than scheduling a timeout.

	Raise the original ImportError when importing zmq fails.
Should be more informative than no module cffi....

Warning

Users of Python 3.4 should not use pyzmq < 14.3, due to changes in garbage collection.

14.2.0

New Stuff

	Raise new ZMQVersionError when a requested method is not supported by the linked libzmq.
For backward compatibility, this subclasses NotImplementedError.

Bugs Fixed

	Memory leak introduced in pyzmq-14.0 in zero copy.

	OverflowError on 32 bit systems in zero copy.

14.1.0

Security

The headline features for 14.1 are adding better support for libzmq’s
security features.

	When libzmq is bundled as a Python extension (e.g. wheels, eggs),
libsodium is also bundled (excluding Windows),
ensuring that libzmq security is available to users who install from wheels

	New zmq.auth, implementing zeromq’s ZAP authentication,
modeled on czmq zauth.
For more information, see the examples [https://github.com/zeromq/pyzmq/tree/HEAD/examples/].

Other New Stuff

	Add PYZMQ_BACKEND for enabling use of backends outside the pyzmq codebase.

	Add underlying property and shadow()
method to Context and Socket, for handing off sockets and contexts.
between pyzmq and other bindings (mainly pyczmq [https://github.com/zeromq/pyczmq]).

	Add TOS, ROUTER_HANDOVER, and IPC_FILTER constants from libzmq-4.1-dev.

	Add Context option support in the CFFI backend.

	Various small unicode and build fixes, as always.

	send_json() and recv_json() pass any extra kwargs to json.dumps/loads.

Deprecations

	Socket.socket_type is deprecated, in favor of Socket.type,
which has been available since 2.1.

14.0.1

Bugfix release

	Update bundled libzmq to current (4.0.3).

	Fix bug in Context.destroy() with no open sockets.

	Threadsafety fixes in the garbage collector.

	Python 3 fixes in zmq.ssh.tunnel.

14.0.0

	Update bundled libzmq to current (4.0.1).

	Backends are now implemented in zmq.backend instead of zmq.core.
This has no effect on public APIs.

	Various build improvements for Cython and CFFI backends (PyPy compiles at build time).

	Various GIL-related performance improvements - the GIL is no longer touched from a zmq IO thread.

	Adding a constant should now be a bit easier - only zmq/sugar/constant_names should need updating,
all other constant-related files should be automatically updated by setup.py constants.

	add support for latest libzmq-4.0.1
(includes ZMQ_CURVE security and socket event monitoring).

New stuff

	Socket.monitor()

	Socket.get_monitor_socket()

	zmq.curve_keypair()

	zmq.utils.monitor

	zmq.utils.z85

13.1.0

The main new feature is improved tornado 3 compatibility.
PyZMQ ships a ‘minitornado’ submodule, which contains a small subset of tornado 3.0.1,
in order to get the IOLoop base class. zmq.eventloop.ioloop.IOLoop is now a simple subclass,
and if the system tornado is ≥ 3.0, then the zmq IOLoop is a proper registered subclass
of the tornado one itself, and minitornado is entirely unused.

13.0.2

Bugfix release!

A few things were broken in 13.0.0, so this is a quick bugfix release.

	FIXED EAGAIN was unconditionally turned into KeyboardInterrupt

	FIXED we used totally deprecated ctypes_configure to generate constants in CFFI backend

	FIXED memory leak in CFFI backend for PyPy

	FIXED typo prevented IPC_PATH_MAX_LEN from ever being defined

	FIXED various build fixes - linking with librt, Cython compatibility, etc.

13.0.1

defunct bugfix. We do not speak of this…

13.0.0

PyZMQ now officially targets libzmq-3 (3.2.2),
0MQ ≥ 2.1.4 is still supported for the indefinite future, but 3.x is recommended.
PyZMQ has detached from libzmq versioning,
and will just follow its own regular versioning scheme from now on.
PyZMQ bdists will include whatever is the latest stable libzmq release (3.2.2 for pyzmq-13.0).

Note

set/get methods are exposed via get/setattr on all Context, Socket, and Frame classes.
This means that subclasses of these classes that require extra attributes
must declare these attributes at the class level.

Experiments Removed

	The Threadsafe ZMQStream experiment in 2.2.0.1 was deemed inappropriate and not useful,
and has been removed.

	The zmq.web experiment has been removed,
to be developed as a standalone project [https://github.com/ellisonbg/zmqweb].

New Stuff

	Support for PyPy via CFFI backend (requires py, ctypes-configure, and cffi).

	Add support for new APIs in libzmq-3

	Socket.disconnect()

	Socket.unbind()

	Context.set()

	Context.get()

	Frame.set()

	Frame.get()

	zmq.proxy()

	zmq.devices.Proxy

	Exceptions for common zmq errnos: zmq.Again, zmq.ContextTerminated
(subclass ZMQError, so fully backward-compatible).

	Setting and getting Socket.hwm sets or gets both SNDHWM/RCVHWM for libzmq-3.

	Implementation splits core Cython bindings from pure-Python subclasses
with sugar methods (send/recv_multipart). This should facilitate
non-Cython backends and PyPy support [spoiler: it did!].

Bugs Fixed

	Unicode fixes in log and monitored queue

	MinGW, ppc, cross-compilation, and HP-UX build fixes

	zmq.green should be complete - devices and tornado eventloop both work
in gevent contexts.

2.2.0.1

This is a tech-preview release, to try out some new features.
It is expected to be short-lived, as there are likely to be issues to iron out,
particularly with the new pip-install support.

Experimental New Stuff

These features are marked ‘experimental’, which means that their APIs are not set in stone,
and may be removed or changed in incompatible ways in later releases.

Threadsafe ZMQStream

With the IOLoop inherited from tornado, there is exactly one method that is threadsafe:
add_callback() [https://www.tornadoweb.org/en/stable/ioloop.html#tornado.ioloop.IOLoop.add_callback]. With this release, we are trying an experimental option
to pass all IOLoop calls via this method, so that ZMQStreams can be used from one thread
while the IOLoop runs in another. To try out a threadsafe stream:

stream = ZMQStream(socket, threadsafe=True)

pip install pyzmq

PyZMQ should now be pip installable, even on systems without libzmq.
In these cases, when pyzmq fails to find an appropriate libzmq to link against,
it will try to build libzmq as a Python extension.
This work is derived from pyzmq_static [https://github.com/brandon-rhodes/pyzmq-static].

To this end, PyZMQ source distributions include the sources for libzmq (2.2.0) and libuuid (2.21),
both used under the LGPL.

zmq.green

The excellent gevent_zeromq [https://github.com/tmc/gevent-zeromq] socket
subclass which provides gevent [https://www.gevent.org/] compatibility has been merged as
zmq.green.

See also

zmq.green

Bugs Fixed

	TIMEO sockopts are properly included for libzmq-2.2.0

	avoid garbage collection of sockets after fork (would cause assert (mailbox.cpp:79)).

2.2.0

Some effort has gone into refining the pyzmq API in this release to make it a model for
other language bindings. This is principally made in a few renames of objects and methods,
all of which leave the old name for backwards compatibility.

Note

As of this release, all code outside zmq.core is BSD licensed (where
possible), to allow more permissive use of less-critical code and utilities.

Name Changes

	The Message class has been renamed to Frame, to better match other
zmq bindings. The old Message name remains for backwards-compatibility. Wherever pyzmq
docs say “Message”, they should refer to a complete zmq atom of communication (one or
more Frames, connected by ZMQ_SNDMORE). Please report any remaining instances of
Message==MessagePart with an Issue (or better yet a Pull Request).

	All foo_unicode methods are now called foo_string (_unicode remains for
backwards compatibility). This is not only for cross-language consistency, but it makes
more sense in Python 3, where native strings are unicode, and the _unicode suffix
was wedded too much to Python 2.

Other Changes and Removals

	prefix removed as an unused keyword argument from send_multipart().

	ZMQStream send() default has been changed to copy=True, so it matches
Socket send().

	ZMQStream on_err() is deprecated, because it never did anything.

	Python 2.5 compatibility has been dropped, and some code has been cleaned up to reflect
no-longer-needed hacks.

	Some Cython files in zmq.core have been split, to reduce the amount of
Cython-compiled code. Much of the body of these files were pure Python, and thus did
not benefit from the increased compile time. This change also aims to ease maintaining
feature parity in other projects, such as
pyzmq-ctypes [https://github.com/svpcom/pyzmq-ctypes].

New Stuff

	Context objects can now set default options when they create a socket. These
are set and accessed as attributes to the context. Socket options that do not apply to a
socket (e.g. SUBSCRIBE on non-SUB sockets) will simply be ignored.

	on_recv_stream() has been added, which adds the stream itself as a
second argument to the callback, making it easier to use a single callback on multiple
streams.

	A Frame.more boolean attribute has been added to the Frame (née
Message) class, so that frames can be identified as terminal without extra queries of
Socket.rcvmore.

Experimental New Stuff

These features are marked ‘experimental’, which means that their APIs are not
set in stone, and may be removed or changed in incompatible ways in later releases.

	zmq.web added for load-balancing requests in a tornado webapp with zeromq.

2.1.11

	remove support for LABEL prefixes. A major feature of libzmq-3.0, the LABEL
prefix, has been removed from libzmq, prior to the first stable libzmq 3.x release.

	The prefix argument to send_multipart() remains, but it continue to behave in
exactly the same way as it always has on 2.1.x, simply prepending message parts.

	recv_multipart() will always return a list, because prefixes are once
again indistinguishable from regular message parts.

	add zmq.Socket.poll() method, for simple polling of events on a single socket.

	no longer require monkeypatching tornado IOLoop. The ioloop.ZMQPoller class
is a poller implementation that matches tornado’s expectations, and pyzmq sockets can
be used with any tornado application just by specifying the use of this poller. The
pyzmq IOLoop implementation now only trivially differs from tornado’s.

It is still recommended to use ioloop.install(), which sets both the zmq and
tornado global IOLoop instances to the same object, but it is no longer necessary.

Warning

The most important part of this change is that the IOLoop.READ/WRITE/ERROR
constants now match tornado’s, rather than being mapped directly to the zmq
POLLIN/OUT/ERR. So applications that used the low-level IOLoop.add_handler
code with POLLIN/OUT/ERR directly (used to work, but was incorrect), rather than
using the IOLoop class constants will no longer work. Fixing these to use the IOLoop
constants should be insensitive to the actual value of the constants.

2.1.10

	Add support for libzmq-3.0 LABEL prefixes:

Warning

This feature has been removed from libzmq, and thus removed from future pyzmq
as well.

	send a message with label-prefix with:

send_multipart([b"msg", b"parts"], prefix=[b"label", b"prefix"])

	zmq.Socket.recv_multipart() returns a tuple of (prefix,msg) if a label prefix is detected

	ZMQStreams and devices also respect the LABEL prefix

	add czmq-style close&term as zmq.Context.destroy(), so that zmq.Context.term()
remains threadsafe and 1:1 with libzmq.

	zmq.Socket.close() takes optional linger option, for setting linger prior
to closing.

	add zmq_version_info() and
pyzmq_version_info() for getting libzmq and pyzmq versions as
tuples of numbers. This helps with the fact that version string comparison breaks down
once versions get into double-digits.

	ioloop changes merged from upstream Tornado [https://www.tornadoweb.org] 2.1

2.1.9

	added zmq.ssh tools for tunneling socket connections, copied from IPython

	Expanded sockopt support to cover changes in libzmq-4.0 dev.

	Fixed an issue that prevented KeyboardInterrupt [https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt] from being catchable.

	Added attribute-access for set/getsockopt. Setting/Getting attributes of Sockets
with the names of socket options is mapped to calls of set/getsockopt.

s.hwm = 10
s.identity = b"whoda"
s.linger
-1

	Terminating a Context closes the sockets it created, matching the behavior in
czmq [http://czmq.zeromq.org/].

	ThreadDevices use zmq.Context.instance() to create sockets, so they can use
inproc connections to sockets in other threads.

	fixed units error on zmq.select(), where the poll timeout was 1000 times longer
than expected.

	Add missing DEALER/ROUTER socket type names (currently aliases, to be replacements for XREP/XREQ).

	base libzmq dependency raised to 2.1.4 (first stable release) from 2.1.0.

2.1.7.1

	bdist for 64b Windows only. This fixed a type mismatch on the ZMQ_FD sockopt
that only affected that platform.

2.1.7

	Added experimental support for libzmq-3.0 API

	Add zmq.eventloop.ioloop.install for using pyzmq’s IOLoop in a tornado
application.

2.1.4

	First version with binary distribution support

	Added zmq.Context.instance() method for using a single Context throughout an application
without passing references around.

Using PyZMQ

	Building pyzmq
	Installing from source

	Examples

	Finding libzmq

	Building bundled libzmq

	Passing arguments

	Cross-compiling pyzmq

	More Than Just Bindings
	The Core as Bindings

	Thread Safety

	Socket Options as Attributes

	libzmq constants as Enums

	Context managers

	Core Extensions

	Extensions

	Serializing messages with PyZMQ
	Builtin serialization

	Using your own serialization

	Devices in PyZMQ
	BackgroundDevices

	MonitoredQueue

	Eventloops and PyZMQ
	AsyncIO

	Tornado IOLoop

	PyZMQ and gevent

	Working with libzmq DRAFT sockets

	Asynchronous Logging via PyZMQ
	Getting Started

	PUB/SUB and Topics

	PUBHandler

	Tunneling PyZMQ Connections with SSH

Building pyzmq

pyzmq publishes around a hundred wheels for each release, so hopefully very few folks need to build pyzmq from source.

pyzmq 26 has a whole new build system using CMake via scikit-build-core [https://scikit-build-core.readthedocs.io].

~all options can be specified via environment variables with the same name, in order to play nicely with pip.

Installing from source

When compiling pyzmq, it is generally recommended that zeromq be installed separately, via homebrew, apt, yum, etc:

Debian-based
sudo apt-get install libzmq3-dev

Fedora-based
sudo yum install libzmq3-devel

homebrew
brew install zeromq

You can install pyzmq from source with pip by telling it --no-binary pyzmq:

python3 -m pip install pyzmq --no-binary pyzmq

or an editable install from a local checkout:

python3 -m pip install -e .

Building from source uses CMake via scikit-build-core.
CMake >= 3.28 is required.
scikit-build-core will attempt to download cmake if a satisfactory version is not found.

Examples

First, some quick examples of influencing pyzmq’s build.

Build a wheel against already-installed libzmq:

export ZMQ_PREFIX=/usr/local
python3 -m pip install pyzmq --no-binary pyzmq

Force building bundled libzmq with the draft API:

export ZMQ_PREFIX=bundled
export ZMQ_BUILD_DRAFT=1
python3 -m pip install pyzmq --no-binary pyzmq

Finding libzmq

First, pyzmq tries to find libzmq to link against it.

pyzmq will first try to search using standard CMake methods, followed by pkg-config.

You can pass through arguments to the build system via the CMAKE_ARGS environment variable.
e.g.

CMAKE_ARGS="-DCMAKE_PREFIX_PATH=/path/to/something"

or

PKG_CONFIG_PATH="$PREFIX/lib/pkgconfig"

If pyzmq doesn’t find your libzmq via the default search, or you want to skip the search and tell pyzmq exactly where to look, set ZMQ_PREFIX (this skips cmake/pkgconfig entirely):

ZMQ_PREFIX=/path/to/zmq # should contain 'include', 'lib', etc.

Disabling bundled build fallback

You may want to keep the default search,
which will import targets from CMake, pkg-config, etc.,
but make sure libzmq is found.

To do this, set PYZMQ_NO_BUNDLE.
If you set only this, pyzmq will still search via standard means, but fail if libzmq is not found, rather than falling back on the bundled static library.

-DPYZMQ_NO_BUNDLE=ON

Building bundled libzmq

If pyzmq doesn’t find a libzmq to link to, it will fall back on building libzmq itself.
You can tell pyzmq to skip searching for libzmq and always build the bundled version with ZMQ_PREFIX=bundled.

When building a bundled libzmq, pyzmq downloads and builds libzmq and libsodium as static libraries.
These static libraries are then linked to by the pyzmq extension and discarded.

Bundled libzmq is supported on a best-effort basis, and isn’t expected to work everywhere with zero configuration.
If you have trouble building bundled libzmq, please do report it [https://github.com/zeromq/pyzmq/issues].
But the best solution is usually to install libzmq yourself via the appropriate mechanism before building pyzmq.

Building bundled libsodium

libsodium is built first, with configure most places:

./configure --enable-static --disable-shared --with-pic
make
make install

or msbuild on Windows:

msbuild /m /v:n /p:Configuration=StaticRelease /pPlatform=x64 builds/msvc/vs2022/libsodium.sln

You can add arguments to configure with a semicolon-separated list, by specifying PYZMQ_LIBSODIUM_CONFIGURE_ARGS variable:

PYZMQ_LIBSODIUM_CONFIGURE_ARGS="--without-pthread --enable-minimal"
or
CMAKE_ARGS="-DPYZMQ_LIBSODIUM_CONFIGURE_ARGS=--without-pthread;--enable-minimal"

and PYZMQ_LIBSODIUM_MSBUILD_ARGS on Windows:

PYZMQ_LIBSODIUM_MSBUILD_ARGS="/something /else"
or
CMAKE_ARGS="-DPYZMQ_LIBSODIUM_MSBUILD_ARGS=/something;/else"

Note

command-line arguments from environment variables are expected to be space-separated (-a -b),
while CMake variables are expected to be CMake lists (semicolon-separated) (-a;-b).

Building bundled libzmq

The libzmq-static static library target is imported via FetchContent [https://cmake.org/cmake/help/latest/module/FetchContent.html], which means the libzmq CMake build is used on all platforms.
This means that configuring the build of libzmq itself is done directly via CMAKE_ARGS,
and all of libzmq’s cmake flags should be available.
See libzmq’s install docs [https://github.com/zeromq/libzmq/blob/HEAD/INSTALL] for more.

For example, to enable OpenPGM:

CMAKE_ARGS="-DWITH_OPENPGM=ON"

Specifying bundled versions

You can specify which version of libsodium/libzmq to bundle with:

-DPYZMQ_LIBZMQ_VERSION=4.3.5
-DPYZMQ_LIBSODIUM_VERSION=1.0.19

or the specify the full URL to download (e.g. to test bundling an unreleased version):

-DPYZMQ_LIBZMQ_URL="https://github.com/zeromq/libzmq/releases/download/v4.3.5/zeromq-4.3.5.tar.gz"
-DPYZMQ_LIBSODIUM_URL="https://download.libsodium.org/libsodium/releases/libsodium-1.0.19.tar.gz"

Warning

Only the default versions are supported and there is no guarantee that bundling versions will work, but you are welcome to try!

Windows notes

I’m not at all confident in building things on Windows, but so far things work in CI.
I’ve done my best to expose options to allow users to override things if they don’t work,
but it’s not really meant to be customizable; it’s meant to allow you to workaround my mistakes without waiting for a release.

libsodium ships several solutions for msbuild, identified by /builds/msvc/vs{year}/libsodium.sln.
pyzmq tries to guess which solution to use based on the MSVC_VERSION CMake variable,
but you can skip the guess by specifying -D PYZMQ_LIBSODIUM_VS_VERSION=2022 to explicitly use the vs2022 solution.

Passing arguments

pyzmq has a few CMake options to influence the build. All options are settable as environment variables, as well.
Other than ZMQ_PREFIX and ZMQ_DRAFT_API which have been around forever, environment variables for building pyzmq have the prefix PYZMQ_.

The _ARGS variables that are meant to pass-through command-line strings accept standard command-line format from environment, or semicolon-separated lists when specified directly to cmake.

So

export ZMQ_PREFIX=bundled
export PYZMQ_LIBZMQ_VERSION=4.3.4
export PYZMQ_LIBSODIUM_CONFIGURE_ARGS=--disable-pie --minimal

python3 -m build .

is equivalent to

export CMAKE_ARGS="-DZMQ_PREFIX=bundled -DPYZMQ_LIBZMQ_VERSION=4.3.4 -DPYZMQ_LIBSODIUM_CONFIGURE_ARGS=--disable-pie;--minimal"
python3 -m build .

Most cmake options can be seen below:

cmake -LH output for pyzmq, which can be passed via CMAKE_ARGS.
Most of these can also be specified via environment variables.

Path to a program.
CYTHON:FILEPATH=$PREFIX/bin/cython

semicolon-separated list of arguments to pass to ./configure for bundled libsodium
PYZMQ_LIBSODIUM_CONFIGURE_ARGS:STRING=

semicolon-separated list of arguments to pass to msbuild for bundled libsodium
PYZMQ_LIBSODIUM_MSBUILD_ARGS:STRING=

full URL to download bundled libsodium
PYZMQ_LIBSODIUM_URL:STRING=

libsodium version when bundling
PYZMQ_LIBSODIUM_VERSION:STRING=1.0.19

Visual studio solution version for bundled libsodium (default: detect from MSVC_VERSION)
PYZMQ_LIBSODIUM_VS_VERSION:STRING=

full URL to download bundled libzmq
PYZMQ_LIBZMQ_URL:STRING=

libzmq version when bundling
PYZMQ_LIBZMQ_VERSION:STRING=4.3.5

Prohibit building bundled libzmq. Useful for repackaging, to allow default search for libzmq and requiring it to succeed.
PYZMQ_NO_BUNDLE:BOOL=OFF

whether to build the libzmq draft API
ZMQ_DRAFT_API:BOOL=OFF

libzmq installation prefix or 'bundled'
ZMQ_PREFIX:STRING=auto

The directory containing a CMake configuration file for ZeroMQ.
ZeroMQ_DIR:PATH=$PREFIX/lib/cmake/ZeroMQ

cmake -LH output for libzmq, showing additional arguments
that can be passed to CMAKE_ARGS when building bundled libzmq

Path to a program.
A2X_EXECUTABLE:FILEPATH=A2X_EXECUTABLE-NOTFOUND

Choose polling system for zmq_poll(er)_*. valid values are
poll or select [default=poll unless POLLER=select]
API_POLLER:STRING=

Whether or not to build the shared object
BUILD_SHARED:BOOL=ON

Whether or not to build the static archive
BUILD_STATIC:BOOL=ON

Whether or not to build the tests
BUILD_TESTS:BOOL=ON

Build with static analysis(make take very long)
ENABLE_ANALYSIS:BOOL=OFF

Build with address sanitizer
ENABLE_ASAN:BOOL=OFF

Run tests that require sudo and capsh (for cap_net_admin)
ENABLE_CAPSH:BOOL=OFF

Include Clang
ENABLE_CLANG:BOOL=ON

Enables cpack rules
ENABLE_CPACK:BOOL=ON

Enable CURVE security
ENABLE_CURVE:BOOL=OFF

Build and install draft classes and methods
ENABLE_DRAFTS:BOOL=ON

Enable/disable eventfd
ENABLE_EVENTFD:BOOL=OFF

Build using compiler intrinsics for atomic ops
ENABLE_INTRINSICS:BOOL=OFF

Automatically close libsodium randombytes. Not threadsafe without getrandom()
ENABLE_LIBSODIUM_RANDOMBYTES_CLOSE:BOOL=ON

Build with empty ZMQ_EXPORT macro, bypassing platform-based automated detection
ENABLE_NO_EXPORT:BOOL=OFF

Enable precompiled headers, if possible
ENABLE_PRECOMPILED:BOOL=ON

Use radix tree implementation to manage subscriptions
ENABLE_RADIX_TREE:BOOL=ON

Build with thread sanitizer
ENABLE_TSAN:BOOL=OFF

Build with undefined behavior sanitizer
ENABLE_UBSAN:BOOL=OFF

Enable WebSocket transport
ENABLE_WS:BOOL=ON

#
LIBZMQ_PEDANTIC:BOOL=ON

#
LIBZMQ_WERROR:BOOL=OFF

Choose polling system for I/O threads. valid values are
kqueue, epoll, devpoll, pollset, poll or select [default=autodetect]
POLLER:STRING=

Path to a library.
RT_LIBRARY:FILEPATH=RT_LIBRARY-NOTFOUND

Build html docs
WITH_DOCS:BOOL=ON

Use libbsd instead of builtin strlcpy
WITH_LIBBSD:BOOL=ON

Use libsodium
WITH_LIBSODIUM:BOOL=OFF

Use static libsodium library
WITH_LIBSODIUM_STATIC:BOOL=OFF

Enable militant assertions
WITH_MILITANT:BOOL=OFF

Build with support for NORM
WITH_NORM:BOOL=OFF

Use NSS instead of builtin sha1
WITH_NSS:BOOL=OFF

Build with support for OpenPGM
WITH_OPENPGM:BOOL=OFF

Build with perf-tools
WITH_PERF_TOOL:BOOL=ON

Use TLS for WSS support
WITH_TLS:BOOL=ON

Build with support for VMware VMCI socket
WITH_VMCI:BOOL=OFF

install path for ZeroMQConfig.cmake
ZEROMQ_CMAKECONFIG_INSTALL_DIR:STRING=lib/cmake/ZeroMQ

ZeroMQ library
ZEROMQ_LIBRARY:STRING=libzmq

Build as OS X framework
ZMQ_BUILD_FRAMEWORK:BOOL=OFF

Build the tests for ZeroMQ
ZMQ_BUILD_TESTS:BOOL=ON

Choose condition_variable_t implementation. Valid values are
stl11, win32api, pthreads, none [default=autodetect]
ZMQ_CV_IMPL:STRING=stl11

Output zmq library base name
ZMQ_OUTPUT_BASENAME:STRING=zmq

Cross-compiling pyzmq

Cross-compiling Python extensions is tricky!

To cross-compile pyzmq, in general you need:

	Python built for the ‘build’ machine

	Python built for the ‘host’ machine (identical version)

	cross-compiling toolchain (e.g. aarch64-linux-gnu-gcc)

	Python setup to cross-compile (crossenv [https://crossenv.readthedocs.io/] is the popular tool these days, and includes lots of info for cross-compiling for Python, but pyzmq makes no assumptions)

It is probably a good idea to build libzmq/libsodium separately and link them with ZMQ_PREFIX,
as cross-compiling bundled libzmq is not guaranteed to work.

I don’t have a lot of experience cross-compiling,
but we have two example Dockerfiles that appear to work to cross-compile pyzmq.
These aren’t official or supported, but they appear to work and may be useful as reference to get you started.

Dockerfile for building x86_64 on aarch64
FROM ubuntu:22.04
RUN apt-get -y update \
 && apt-get -y install curl unzip cmake ninja-build openssl xz-utils build-essential libz-dev libssl-dev

ENV BUILD_PREFIX=/opt/build
ENV PATH=${BUILD_PREFIX}/bin:$PATH

ARG PYTHON_VERSION=3.11.8
WORKDIR /src
RUN curl -L -o python.tar.xz https://www.python.org/ftp/python/${PYTHON_VERSION}/Python-${PYTHON_VERSION}.tar.xz \
 && tar -xf python.tar.xz \
 && rm python.tar.xz \
 && mv Python-* cpython

build our 'build' python
WORKDIR /src/cpython
RUN ./configure --prefix=${BUILD_PREFIX}
RUN make -j4
RUN make install

sanity check
RUN python3 -c 'import ssl' \
 && python3 -m ensurepip \
 && python3 -m pip install --upgrade pip

get our cross-compile toolchain
I'm on aarch64, so use x86_64 as host
ENV BUILD="aarch64-linux-gnu"
ENV HOST="x86_64-linux-gnu"
RUN HOST_PKG=$(echo $HOST | sed s@_@-@g) \
 && apt-get -y install binutils-$HOST_PKG gcc-$HOST_PKG g++-$HOST_PKG
ENV CC=$HOST-gcc \
 CXX=$HOST-g++

build our 'host' python
WORKDIR /src/cpython
RUN make clean
ENV HOST_PREFIX=/opt/host
RUN ./configure \
 --prefix=${HOST_PREFIX} \
 --host=$HOST \
 --build=$BUILD \
 --with-build-python=$BUILD_PREFIX/bin/python3 \
 --without-ensurepip \
 ac_cv_buggy_getaddrinfo=no \
 ac_cv_file__dev_ptmx=yes \
 ac_cv_file__dev_ptc=no
RUN make -j4
RUN make install

WORKDIR /src

(optional) cross-compile libsodium, libzmq
WORKDIR /src
ENV LIBSODIUM_VERSION=1.0.19
RUN curl -L -O "https://download.libsodium.org/libsodium/releases/libsodium-${LIBSODIUM_VERSION}.tar.gz" \
&& tar -xzf libsodium-${LIBSODIUM_VERSION}.tar.gz \
&& mv libsodium-stable libsodium \
&& rm libsodium*.tar.gz
#
WORKDIR /src/libsodium
RUN ./configure --prefix="${HOST_PREFIX}" --host=$HOST
RUN make -j4
RUN make install
#
build libzmq
WORKDIR /src
ENV LIBZMQ_VERSION=4.3.5
RUN curl -L -O "https://github.com/zeromq/libzmq/releases/download/v${LIBZMQ_VERSION}/zeromq-${LIBZMQ_VERSION}.tar.gz" \
&& tar -xzf zeromq-${LIBZMQ_VERSION}.tar.gz \
&& mv zeromq-${LIBZMQ_VERSION} zeromq
WORKDIR /src/zeromq
RUN ./configure --prefix="$HOST_PREFIX" --host=$HOST --disable-perf --disable-Werror --without-docs --enable-curve --with-libsodium=$HOST_PREFIX --disable-drafts --disable-libsodium_randombytes_close
RUN make -j4
RUN make install

setup crossenv
WORKDIR /src
ENV CROSS_PREFIX=/opt/cross
RUN python3 -m pip install crossenv \
 && python3 -m crossenv ${HOST_PREFIX}/bin/python3 ${CROSS_PREFIX}
ENV PATH=${CROSS_PREFIX}/bin:$PATH

install build dependencies in crossenv
RUN . ${CROSS_PREFIX}/bin/activate \
 && build-pip install build pyproject_metadata scikit-build-core pathspec cython

if pyzmq is bundling libsodium, tell it to cross-compile
not required if libzmq is already installed
ENV PYZMQ_LIBSODIUM_CONFIGURE_ARGS="--host $HOST"
ARG PYZMQ_VERSION=26.0.0b2
build wheel of pyzmq
WORKDIR /src
RUN python3 -m pip download --no-binary pyzmq --pre pyzmq==$PYZMQ_VERSION \
 && tar -xzf pyzmq-*.tar.gz \
 && rm pyzmq-*.tar.gz \
 && . ${CROSS_PREFIX}/bin/activate \
 && cross-python -m build --no-isolation --skip-dependency-check --wheel ./pyzmq*

there is now a pyzmq wheel in /src/pyzmq-$version/dist/pyzmq-$VERSION-cp311-cp311-linux_x86_64.whl

Dockerfile for building for android-aarch64 on x86_64
FROM ubuntu:22.04
RUN apt-get -y update \
 && apt-get -y install curl unzip cmake ninja-build openssl xz-utils build-essential libz-dev libssl-dev

ENV BUILD_PREFIX=/opt/build
ENV PATH=${BUILD_PREFIX}/bin:$PATH

ARG PYTHON_VERSION=3.11.8
WORKDIR /src
RUN curl -L -o python.tar.xz https://www.python.org/ftp/python/${PYTHON_VERSION}/Python-${PYTHON_VERSION}.tar.xz \
 && tar -xf python.tar.xz \
 && rm python.tar.xz \
 && mv Python-* cpython

build our 'build' python
WORKDIR /src/cpython
RUN ./configure --prefix=${BUILD_PREFIX}
RUN make -j4
RUN make install

sanity check
RUN python3 -c 'import ssl' \
 && python3 -m ensurepip \
 && python3 -m pip install --upgrade pip

get our cross-compile toolchain from NDK
WORKDIR /opt
RUN curl -L -o ndk.zip https://dl.google.com/android/repository/android-ndk-r26c-linux.zip \
 && unzip ndk.zip \
 && rm ndk.zip \
 && mv android-* ndk
ENV BUILD="x86_64-linux-gnu"
ENV HOST="aarch64-linux-android34"
ENV PATH=/opt/ndk/toolchains/llvm/prebuilt/linux-x86_64/bin:$PATH
ENV CC=$HOST-clang \
 CXX=$HOST-clang++ \
 READELF=llvm-readelf

build our 'host' python
WORKDIR /src/cpython
RUN make clean
ENV HOST_PREFIX=/opt/host
RUN ./configure \
 --prefix=${HOST_PREFIX} \
 --host=$HOST \
 --build=$BUILD \
 --with-build-python=$BUILD_PREFIX/bin/python3 \
 --without-ensurepip \
 ac_cv_buggy_getaddrinfo=no \
 ac_cv_file__dev_ptmx=yes \
 ac_cv_file__dev_ptc=no
RUN make -j4
RUN make install

(optional) cross-compile libsodium, libzmq
WORKDIR /src
ENV LIBSODIUM_VERSION=1.0.19
RUN curl -L -O "https://download.libsodium.org/libsodium/releases/libsodium-${LIBSODIUM_VERSION}.tar.gz" \
 && tar -xzf libsodium-${LIBSODIUM_VERSION}.tar.gz \
 && mv libsodium-stable libsodium \
 && rm libsodium*.tar.gz

WORKDIR /src/libsodium
need CFLAGS or libsodium >= 1.0.20 https://github.com/android/ndk/issues/1945
ENV CFLAGS="-march=armv8-a+crypto"
RUN ./configure --prefix="${HOST_PREFIX}" --host=$HOST
RUN make -j4
RUN make install

build libzmq
WORKDIR /src
ENV LIBZMQ_VERSION=4.3.5
RUN curl -L -O "https://github.com/zeromq/libzmq/releases/download/v${LIBZMQ_VERSION}/zeromq-${LIBZMQ_VERSION}.tar.gz" \
 && tar -xzf zeromq-${LIBZMQ_VERSION}.tar.gz \
 && mv zeromq-${LIBZMQ_VERSION} zeromq
WORKDIR /src/zeromq
RUN ./configure --prefix="$HOST_PREFIX" --host=$HOST --disable-perf --disable-Werror --without-docs --enable-curve --with-libsodium=$HOST_PREFIX --disable-drafts --disable-libsodium_randombytes_close
RUN make -j4
RUN make install

setup crossenv
ENV CROSS_PREFIX=/opt/cross
RUN python3 -m pip install crossenv \
 && python3 -m crossenv ${HOST_PREFIX}/bin/python3 ${CROSS_PREFIX}
ENV PATH=${CROSS_PREFIX}/bin:$PATH

install build dependencies in crossenv
RUN . ${CROSS_PREFIX}/bin/activate \
 && build-pip install build pyproject_metadata scikit-build-core pathspec cython

ENV ZMQ_PREFIX=${HOST_PREFIX}
if pyzmq is bundling libsodium, tell it to cross-compile
not required if libzmq is already installed
ENV PYZMQ_LIBSODIUM_CONFIGURE_ARGS="--host $HOST"
ARG PYZMQ_VERSION=26.0.0b2
build wheel of pyzmq
WORKDIR /src
RUN python3 -m pip download --no-binary pyzmq --pre pyzmq==$PYZMQ_VERSION \
 && tar -xzf pyzmq-*.tar.gz \
 && rm pyzmq-*.tar.gz \
 && . ${CROSS_PREFIX}/bin/activate \
 && cross-python -m build --no-isolation --skip-dependency-check --wheel ./pyzmq*

there is now a pyzmq wheel in /src/pyzmq-$VERSION/dist/pyzmq-$VERSION-cp311-cp311-linux_aarch64.whl

More Than Just Bindings

PyZMQ is ostensibly the Python bindings for ØMQ [https://zeromq.org/], but the project, following
Python’s ‘batteries included’ philosophy, provides more than just Python methods and
objects for calling into the ØMQ C++ library.

The Core as Bindings

PyZMQ is currently broken up into subpackages. First, is the Backend. zmq.backend
contains the actual bindings for ZeroMQ, and no extended functionality beyond the very
basics required.
This is the compiled portion of pyzmq,
either with Cython (for CPython) or CFFI (for PyPy).

Thread Safety

In ØMQ, Contexts are threadsafe objects, but Sockets are not. It is safe to use a
single Context (e.g. via zmq.Context.instance()) in your entire multithreaded
application, but you should create sockets on a per-thread basis. If you share sockets
across threads, you are likely to encounter uncatchable c-level crashes of your
application unless you use judicious application of threading.Lock [https://docs.python.org/3/library/threading.html#threading.Lock], but this
approach is not recommended.

See also

ZeroMQ API note on threadsafety on 2.2 [http://api.zeromq.org/2-2:zmq]
or 3.2 [http://api.zeromq.org/3-2:zmq]

Socket Options as Attributes

Added in version 2.1.9.

In 0MQ, socket options are set/retrieved with the set/getsockopt() methods. With the
class-based approach in pyzmq, it would be logical to perform these operations with
simple attribute access, and this has been added in pyzmq 2.1.9. Simply assign to or
request a Socket attribute with the (case-insensitive) name of a sockopt, and it should
behave just as you would expect:

s = ctx.socket(zmq.DEALER)
s.identity = b"dealer"
s.hwm = 10
s.events
0
s.fd
16

Default Options on the Context

Added in version 2.1.11.

Just like setting socket options as attributes on Sockets, you can do the same on Contexts.
This affects the default options of any new sockets created after the assignment.

ctx = zmq.Context()
ctx.linger = 0
rep = ctx.socket(zmq.REP)
req = ctx.socket(zmq.REQ)

Socket options that do not apply to a socket (e.g. SUBSCRIBE on non-SUB sockets) will
simply be ignored.

libzmq constants as Enums

Added in version 23.

libzmq constants are now available as Python enums,
making it easier to enumerate socket options, etc.

Context managers

Added in version 14: Context/Sockets as context managers

Added in version 20: bind/connect context managers

For more Pythonic resource management,
contexts and sockets can be used as context managers.
Just like standard-library socket and file methods,
entering a context:

import zmq

with zmq.Context() as ctx:
 with ctx.socket(zmq.PUSH) as s:
 s.connect(url)
 s.send_multipart([b"message"])
 # exiting Socket context closes socket
exiting Context context terminates context

In addition, each bind/connect call may be used as a context:

with socket.connect(url):
 s.send_multipart([b"message"])
exiting connect context calls socket.disconnect(url)

Core Extensions

We have extended the core functionality in some ways that appear inside the zmq.sugar layer, and are not general ØMQ features.

Builtin Serialization

First, we added common serialization with the builtin json [https://docs.python.org/3/library/json.html#module-json] and pickle [https://docs.python.org/3/library/pickle.html#module-pickle]
as first-class methods to the Socket class. A socket has the methods
send_json() and send_pyobj(), which correspond to sending an
object over the wire after serializing with json [https://docs.python.org/3/library/json.html#module-json] and pickle [https://docs.python.org/3/library/pickle.html#module-pickle] respectively,
and any object sent via those methods can be reconstructed with the
recv_json() and recv_pyobj() methods. Unicode strings are
other objects that are not unambiguously sendable over the wire, so we include
send_string() and recv_string() that simply send bytes
after encoding the message (‘utf-8’ is the default).

See also

	Further information on serialization in pyzmq.

MessageTracker

The second extension of basic ØMQ functionality is the MessageTracker. The
MessageTracker is an object used to track when the underlying ZeroMQ is done with a
message buffer. One of the main use cases for ØMQ in Python is the ability to perform
non-copying sends. Thanks to Python’s buffer interface, many objects (including NumPy
arrays) provide the buffer interface, and are thus directly sendable. However, as with any
asynchronous non-copying messaging system like ØMQ or MPI, it can be important to know
when the message has actually been sent, so it is safe again to edit the buffer without
worry of corrupting the message. This is what the MessageTracker is for.

The MessageTracker is a simple object, but there is a penalty to its use. Since by its
very nature, the MessageTracker must involve threadsafe communication (specifically a
builtin Queue [https://docs.python.org/3/library/queue.html#queue.Queue] object), instantiating a MessageTracker takes a modest
amount of time (10s of µs), so in situations instantiating many small messages, this can
actually dominate performance. As a result, tracking is optional, via the track flag,
which is optionally passed, always defaulting to False, in each of the three places
where a Frame object (the pyzmq object for wrapping a segment of a message) is
instantiated: The Frame constructor, and non-copying sends and receives.

A MessageTracker is very simple, and has just one method and one attribute. The property
MessageTracker.done will be True when the Frame(s) being tracked are no
longer in use by ØMQ, and MessageTracker.wait() will block, waiting for the
Frame(s) to be released.

Note

A Frame cannot be tracked after it has been instantiated without tracking. If a
Frame is to even have the option of tracking, it must be constructed with
track=True.

Extensions

So far, PyZMQ includes four extensions to core ØMQ that we found basic enough to be
included in PyZMQ itself:

	zmq.log : Logging handlers for hooking Python logging up to the
network

	zmq.devices : Custom devices and objects for running devices in the
background

	zmq.eventloop : The Tornado [https://www.tornadoweb.org] event loop, adapted for use
with ØMQ sockets.

	zmq.ssh : Simple tools for tunneling zeromq connections via ssh.

Serializing messages with PyZMQ

When sending messages over a network, you often need to marshall your data into bytes.

Builtin serialization

PyZMQ is primarily bindings for libzmq, but we do provide three builtin serialization
methods for convenience, to help Python developers learn libzmq. Python has two primary
packages for serializing objects: json [https://docs.python.org/3/library/json.html#module-json] and pickle [https://docs.python.org/3/library/pickle.html#module-pickle], so we provide
simple convenience methods for sending and receiving objects serialized with these
modules. A socket has the methods send_json() and
send_pyobj(), which correspond to sending an object over the wire after
serializing with json and pickle respectively, and any object sent via those
methods can be reconstructed with the recv_json() and
recv_pyobj() methods.

These methods designed for convenience, not for performance, so developers who want
to emphasize performance should use their own serialized send/recv methods.

Using your own serialization

In general, you will want to provide your own serialization that is optimized for your
application or library availability. This may include using your own preferred
serialization ([1], [2]), or adding compression via [3] in the standard
library, or the super fast [4] library.

There are two simple models for implementing your own serialization: write a function
that takes the socket as an argument, or subclass Socket for use in your own apps.

For instance, pickles can often be reduced substantially in size by compressing the data.
The following will send compressed pickles over the wire:

import pickle
import zlib

def send_zipped_pickle(socket, obj, flags=0, protocol=pickle.HIGHEST_PROTOCOL):
 """pickle an object, and zip the pickle before sending it"""
 p = pickle.dumps(obj, protocol)
 z = zlib.compress(p)
 return socket.send(z, flags=flags)

def recv_zipped_pickle(socket, flags=0):
 """inverse of send_zipped_pickle"""
 z = socket.recv(flags)
 p = zlib.decompress(z)
 return pickle.loads(p)

A common data structure in Python is the numpy array. PyZMQ supports sending
numpy arrays without copying any data, since they provide the Python buffer interface.
However just the buffer is not enough information to reconstruct the array on the
receiving side. Here is an example of a send/recv that allow non-copying
sends/recvs of numpy arrays including the dtype/shape data necessary for reconstructing
the array.

import numpy

def send_array(socket, A, flags=0, copy=True, track=False):
 """send a numpy array with metadata"""
 md = dict(
 dtype=str(A.dtype),
 shape=A.shape,
)
 socket.send_json(md, flags | zmq.SNDMORE)
 return socket.send(A, flags, copy=copy, track=track)

def recv_array(socket, flags=0, copy=True, track=False):
 """recv a numpy array"""
 md = socket.recv_json(flags=flags)
 msg = socket.recv(flags=flags, copy=copy, track=track)
 buf = memoryview(msg)
 A = numpy.frombuffer(buf, dtype=md["dtype"])
 return A.reshape(md["shape"])

[1]
Message Pack serialization library https://msgpack.org

[2]
Google Protocol Buffers https://github.com/protocolbuffers/protobuf

[3]
Python stdlib module for zip compression: zlib [https://docs.python.org/3/library/zlib.html#module-zlib]

[4]
Blosc: A blocking, shuffling and loss-less (and crazy-fast) compression library https://www.blosc.org

Devices in PyZMQ

See also

ØMQ Guide Device coverage [https://zguide.zeromq.org/docs/chapter2/#ZeroMQ-s-Built-In-Proxy-Function].

ØMQ has a notion of Devices - simple programs that manage a send-recv pattern for
connecting two or more sockets. Being full programs, devices include a while(True)
loop and thus block execution permanently once invoked. We have provided in the
devices subpackage some facilities for running these devices in the background, as
well as a custom three-socket MonitoredQueue device.

BackgroundDevices

It seems fairly rare that in a Python program one would actually want to create a zmq
device via device() in the main thread, since such a call would block execution
forever. The most likely model for launching devices is in background threads or
processes. We have provided classes for launching devices in a background thread with
ThreadDevice and via multiprocessing with ProcessDevice. For
threadsafety and running across processes, these methods do not take Socket objects as
arguments, but rather socket types, and then the socket creation and configuration happens
via the BackgroundDevice’s foo_in() proxy methods. For each configuration method
(bind/connect/setsockopt), there are proxy methods for calling those methods on the Socket
objects created in the background thread or process, prefixed with ‘in_’ or ‘out_’,
corresponding to the in_socket and out_socket:

from zmq.devices import ProcessDevice

pd = ProcessDevice(zmq.QUEUE, zmq.ROUTER, zmq.DEALER)
pd.bind_in('tcp://*:12345')
pd.connect_out('tcp://127.0.0.1:12543')
pd.setsockopt_in(zmq.IDENTITY, 'ROUTER')
pd.setsockopt_out(zmq.IDENTITY, 'DEALER')
pd.start()
it will now be running in a background process

MonitoredQueue

One of ØMQ’s builtin devices is the QUEUE. This is a symmetric two-socket device that
fully supports passing messages in either direction via any pattern. We saw a logical
extension of the QUEUE as one that behaves in the same way with respect to the in/out
sockets, but also sends every message in either direction also on a third monitor
socket. For performance reasons, this monitored_queue() function is written in
Cython, so the loop does not involve Python, and should have the same performance as the
basic QUEUE device.

One shortcoming of the QUEUE device is that it does not support having ROUTER
sockets as both input and output. This is because ROUTER sockets, when they receive a
message, prepend the IDENTITY of the socket that sent the message (for use in routing
the reply). The result is that the output socket will always try to route the incoming
message back to the original sender, which is presumably not the intended pattern. In
order for the queue to support a ROUTER-ROUTER connection, it must swap the first two parts
of the message in order to get the right message out the other side.

To invoke a monitored queue is similar to invoking a regular ØMQ device:

from zmq.devices import monitored_queue
ins = ctx.socket(zmq.ROUTER)
outs = ctx.socket(zmq.DEALER)
mons = ctx.socket(zmq.PUB)
configure_sockets(ins,outs,mons)
monitored_queue(ins, outs, mons, in_prefix='in', out_prefix='out')

The in_prefix and out_prefix default to ‘in’ and ‘out’ respectively, and a PUB socket
is most logical for the monitor socket, since it will never receive messages, and the
in/out prefix is well suited to the PUB/SUB topic subscription model. All messages sent on
mons will be multipart, the first part being the prefix corresponding to the socket that
received the message.

Or for launching an MQ in the background, there are ThreadMonitoredQueue and
ProcessMonitoredQueue, which function just like the base
BackgroundDevice objects, but add foo_mon() methods for configuring the monitor socket.

Eventloops and PyZMQ

As of pyzmq 17, integrating pyzmq with eventloops should work without any pre-configuration.
Due to the use of an edge-triggered file descriptor,
this has been known to have issues, so please report problems with eventloop integration.

AsyncIO

PyZMQ 15 adds support for asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio] via zmq.asyncio, containing a Socket subclass
that returns asyncio.Future [https://docs.python.org/3/library/asyncio-future.html#asyncio.Future] objects for use in asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio] coroutines.
To use this API, import zmq.asyncio.Context.
Sockets created by this Context will return Futures from any would-be blocking method.

import asyncio
import zmq
from zmq.asyncio import Context

ctx = Context.instance()

async def recv():
 s = ctx.socket(zmq.SUB)
 s.connect("tcp://127.0.0.1:5555")
 s.subscribe(b"")
 while True:
 msg = await s.recv_multipart()
 print("received", msg)
 s.close()

Tornado IOLoop

Tornado [https://www.tornadoweb.org] adds some utility on top of asyncio.
You can use zmq.asyncio socket in a tornado application without any special handling.

We have adapted tornado’s IOStream [https://www.tornadoweb.org/en/stable/iostream.html#tornado.iostream.IOStream] class into ZMQStream for
handling message events on ØMQ sockets. A ZMQStream object works much like a Socket object,
but instead of calling recv() directly, you register a callback with
on_recv_stream(), which will be called with the result of ~.zmq.Socket.recv_multipart.
Callbacks can also be registered for send events with on_send().

ZMQStream

ZMQStream objects let you register callbacks to handle messages as they arrive,
for use with the tornado eventloop.

ZMQStream.send()

ZMQStream objects do have send() and send_multipart()
methods, which behaves the same way as zmq.Socket.send(), but instead of sending right
away, the IOLoop [https://www.tornadoweb.org/en/stable/ioloop.html#tornado.ioloop.IOLoop] will wait until socket is able to send (for instance if HWM
is met, or a REQ/REP pattern prohibits sending at a certain point). Messages sent via
send will also be passed to the callback registered with on_send() after
sending.

on_recv()

ZMQStream.on_recv() is the primary method for using a ZMQStream. It registers a
callback to fire with messages as they are received, which will always be multipart,
even if its length is 1. You can easily use this to build things like an echo socket:

s = ctx.socket(zmq.REP)
s.bind("tcp://localhost:12345")
stream = ZMQStream(s)

def echo(msg):
 stream.send_multipart(msg)

stream.on_recv(echo)
ioloop.IOLoop.instance().start()

on_recv can also take a copy flag, just like zmq.Socket.recv(). If copy=False, then
callbacks registered with on_recv will receive tracked Frame objects instead of
bytes.

Note

A callback must be registered using either ZMQStream.on_recv() or
ZMQStream.on_recv_stream() before any data will be received on the
underlying socket. This allows you to temporarily pause processing on a
socket by setting both callbacks to None. Processing can later be resumed
by restoring either callback.

on_recv_stream()

ZMQStream.on_recv_stream() is just like on_recv above, but the callback will be
passed both the message and the stream, rather than just the message. This is meant to make
it easier to use a single callback with multiple streams.

s1 = ctx.socket(zmq.REP)
s1.bind("tcp://localhost:12345")
stream1 = ZMQStream(s1)

s2 = ctx.socket(zmq.REP)
s2.bind("tcp://localhost:54321")
stream2 = ZMQStream(s2)

def echo(stream, msg):
 stream.send_multipart(msg)

stream1.on_recv_stream(echo)
stream2.on_recv_stream(echo)

ioloop.IOLoop.instance().start()

flush()

Sometimes with an eventloop, there can be multiple events ready on a single iteration of
the loop. The ZMQStream.flush() method allows developers to pull messages off of
the queue to enforce some priority over the event loop ordering. flush pulls any pending
events off of the queue. You can specify to flush only recv events, only send events, or
any events, and you can specify a limit for how many events to flush in order to prevent
starvation.

PyZMQ and gevent

PyZMQ ≥ 2.2.0.1 ships with a gevent [https://www.gevent.org/] compatible API as zmq.green.
To use it, simply:

import zmq.green as zmq

Then write your code as normal.

Socket.send/recv and zmq.Poller are gevent-aware.

In PyZMQ ≥ 2.2.0.2, green.device and green.eventloop should be gevent-friendly as well.

Note

The green device does not release the GIL, unlike the true device in zmq.core.

zmq.green.eventloop includes minimally patched IOLoop/ZMQStream in order to use the gevent-enabled Poller,
so you should be able to use the ZMQStream interface in gevent apps as well,
though using two eventloops simultaneously (tornado + gevent) is not recommended.

Warning

There is a known issue [https://github.com/zeromq/pyzmq/issues/229] in gevent ≤ 1.0 or libevent,
which can cause zeromq socket events to be missed.
PyZMQ works around this by adding a timeout so it will not wait forever for gevent to notice events.
The only known solution for this is to use gevent ≥ 1.0, which is currently at 1.0b3,
and does not exhibit this behavior.

See also

zmq.green examples on GitHub [https://github.com/zeromq/pyzmq/tree/HEAD/examples/gevent].

zmq.green began as gevent_zeromq [https://github.com/tmc/gevent-zeromq],
merged into the pyzmq project.

Working with libzmq DRAFT sockets

libzmq-4.2 has introduced the concept of unstable DRAFT APIs.
As of libzmq-4.2, this includes the CLIENT-SERVER and RADIO-DISH patterns.

Because these APIs are explicitly unstable,
pyzmq does not support them by default,
and pyzmq binaries (wheels) will not be built with DRAFT API support.
However, pyzmq can be built with draft socket support,
as long as you compile pyzmq yourself with a special flag.

To install libzmq with draft support:

ZMQ_VERSION=4.3.5
PREFIX=/usr/local
CPU_COUNT=${CPU_COUNT:-$(python3 -c "import os; print(os.cpu_count())")}

wget https://github.com/zeromq/libzmq/releases/download/v${ZMQ_VERSION}/zeromq-${ZMQ_VERSION}.tar.gz -O libzmq.tar.gz
tar -xzf libzmq.tar.gz
cd zeromq-${ZMQ_VERSION}
./configure --prefix=${PREFIX} --enable-drafts
make -j${CPU_COUNT} && make install

And then build pyzmq with draft support:

export ZMQ_PREFIX=${PREFIX}
export ZMQ_DRAFT_API=1
pip install -v pyzmq --no-binary pyzmq

By specifying --no-binary pyzmq, pip knows to not install the pre-built wheels, and will compile pyzmq from source.

The ZMQ_PREFIX=$PREFIX part is only necessary if libzmq is installed somewhere not on the default search path.
If libzmq is installed in /usr/local or similar,
only the ZMQ_DRAFT_API option is required.

There are examples of the CLIENT-SERVER and RADIO-DISH patterns in the examples/draft
directory of the pyzmq repository.

Asynchronous Logging via PyZMQ

See also

	The ØMQ guide coverage [https://zguide.zeromq.org/docs/chapter5/] of PUB/SUB
messaging

	Python logging module documentation [https://docs.python.org/3/library/logging.html]

Python provides extensible logging facilities through its logging [https://docs.python.org/3/library/logging.html#module-logging] module. This
module allows for easily extensible logging functionality through the use of
Handler [https://docs.python.org/3/library/logging.html#logging.Handler] objects. The most obvious case for hooking up pyzmq to
logging would be to broadcast log messages over a PUB socket, so we have provided a
PUBHandler class for doing just that.

You can use PyZMQ as a log handler with no previous knowledge of how ZMQ works,
and without writing any ZMQ-specific code in your Python project.

Getting Started

Ensure you have installed the pyzmq package from pip, ideally in a
virtual environment [https://docs.python.org/3/library/venv.html]
you created for your project:

pip install pyzmq

Next, configure logging in your Python module and setup the ZMQ log handler:

import logging
from zmq.log.handlers import PUBHandler

zmq_log_handler = PUBHandler('tcp://127.0.0.1:12345')
logger = logging.getLogger()
logger.addHandler(zmq_log_handler)

Usually, you will add the handler only once in the top-level module of your
project, on the root logger, just as we did here.

You can choose any IP address and port number that works on your system. We
used tcp://127.0.0.1:12345 to broadcast events via TCP on the localhost
interface at port 12345. Make note of what you choose here as you will need it
later when you listen to the events.

Logging messages works exactly like normal. This will send an INFO-level
message on the logger we configured above, and that message will be
published on a ZMQ PUB/SUB socket:

logger.info('hello world!')

You can use this module’s built-in command line interface to “tune in” to
messages broadcast by the log handler. To start the log watcher,
run this command from a shell that has access to the pyzmq package
(usually a virtual environment):

python -m zmq.log tcp://127.0.0.1:12345

Then, in a separate process, run your Python module that emits log
messages. You should see them appear almost immediately.

Using the Log Watcher

The included log watcher command line utility is helpful not only for
viewing messages, but also a programming guide to build your own ZMQ
subscriber for log messages.

To see what options are available, pass the --help parameter:

python -m zmq.log --help

The log watcher includes features to add a timestamp to the messages,
align the messages across different error levels, and even colorize
the output based on error level.

Slow Joiner Problem

The great thing about using ZMQ sockets is that you can start the publisher
and subscribers in any order, and you can start & stop any of them while
you leave the others running.

When using ZMQ for logging, this means you
can leave the log watcher running while you start & stop your main
Python module.

However, you need to be aware of what the ZMQ project calls the
“slow joiner problem” [https://zguide.zeromq.org/docs/chapter5/#Slow-Subscriber-Detection-Suicidal-Snail-Pattern] .
To oversimplify, it means it can take a bit of
time for subscribers to re-connect to a publisher that has just
started up again. If the publisher starts and immediately sends a
message, subscribers will likely miss it.

The simplistic workaround when using PyZMQ for logging is to sleep()
briefly after startup, before sending any log messages. See the complete
example below for more details.

Custom Log Formats

A common Python logging recipe encourages
use of the current module name [https://docs.python.org/3/howto/logging-cookbook.html#using-logging-in-multiple-modules]
as the name of the logger. This allows your log messages to reflect your
code hierarchy in a larger project with minimal configuration.

You will need to set a different formatter to see these names in your
ZMQ-published logs. The setFormatter() method accepts a logging.Formatter
instance and optionally a log level to apply the handler to. For example:

zmq_log_handler = PUBHandler('tcp://127.0.0.1:12345')
zmq_log_handler.setFormatter(logging.Formatter(fmt='{name} > {message}', style='{'))
zmq_log_handler.setFormatter(logging.Formatter(fmt='{name} #{lineno:>3} > {message}', style='{'), logging.DEBUG)

Root Topic

By default, the PUBHandler and log watcher use the empty string as the
root topic for published messages. This works well out-of-the-box, but you can
easily set a different root topic string to take advantage of ZMQ’s built-in
topic filtering mechanism.

First, set the root topic on the handler:

zmq_log_handler = PUBHandler("<tcp://127.0.0.1:12345>")
zmq_log_handler.setRootTopic("custom_topic")

Then specify that topic when you start the log watcher:

python -m zmq.log -t custom_topic <tcp://127.0.0.1:12345>

Complete example

Assuming this project hierarchy:

example.py
greetings.py
hello.py

If you have this in example.py:

import logging
from time import sleep
from zmq.log.handlers import PUBHandler

from greetings import hello

zmq_log_handler = PUBHandler("tcp://127.0.0.1:12345")
zmq_log_handler.setFormatter(logging.Formatter(fmt="{name} > {message}", style="{"))
zmq_log_handler.setFormatter(
 logging.Formatter(fmt="{name} #{lineno:>3} > {message}", style="{"), logging.DEBUG
)
zmq_log_handler.setRootTopic("greeter")

logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
logger.addHandler(zmq_log_handler)

if __name__ == "__main__":
 sleep(0.1)
 msg_count = 5
 logger.warning("Preparing to greet the world...")
 for i in range(1, msg_count + 1):
 logger.debug("Sending message {} of {}".format(i, msg_count))
 hello.world()
 sleep(1.0)
 logger.info("Done!")

And this in hello.py:

import logging

logger = logging.getLogger(__name__)

def world():
 logger.info('hello world!')

You can start a log watcher in one process:

python -m zmq.log -t greeter --align tcp://127.0.0.1:12345

And then run example.py in another process:

python example.py

You should see the following output from the log watcher:

greeter.WARNING | root > Preparing to greet the world...
greeter.DEBUG | root # 21 > Sending message 1 of 5
greeter.INFO | greetings.hello > hello world!
greeter.DEBUG | root # 21 > Sending message 2 of 5
greeter.INFO | greetings.hello > hello world!
greeter.DEBUG | root # 21 > Sending message 3 of 5
greeter.INFO | greetings.hello > hello world!
greeter.DEBUG | root # 21 > Sending message 4 of 5
greeter.INFO | greetings.hello > hello world!
greeter.DEBUG | root # 21 > Sending message 5 of 5
greeter.INFO | greetings.hello > hello world!
greeter.INFO | root > Done!

PUB/SUB and Topics

The ØMQ PUB/SUB pattern consists of a PUB socket broadcasting messages, and a collection
of SUB sockets that receive those messages. Each PUB message is a multipart-message, where
the first part is interpreted as a topic. SUB sockets can subscribe to topics by setting
their SUBSCRIBE sockopt, e.g.:

sub = ctx.socket(zmq.SUB)
sub.setsockopt(zmq.SUBSCRIBE, 'topic1')
sub.setsockopt(zmq.SUBSCRIBE, 'topic2')

When subscribed, the SUB socket will only receive messages where the first part starts
with one of the topics set via SUBSCRIBE. The default behavior is to exclude all
messages, and subscribing to the empty string ‘’ will receive all messages.

PUBHandler

The PUBHandler object is created for allowing the python logging to be emitted
on a PUB socket. The main difference between a PUBHandler and a regular logging Handler is
the inclusion of topics. For the most basic logging, you can simply create a PUBHandler
with an interface or a configured PUB socket, and just let it go:

pub = context.socket(zmq.PUB)
pub.bind('tcp://*:12345')
handler = PUBHandler(pub)
logger = logging.getLogger()
logger.addHandler(handler)

At this point, all messages logged with the default logger will be broadcast on the pub
socket.

the PUBHandler does work with topics, and the handler has an attribute root_topic:

handler.root_topic = "myprogram"

Python loggers also have loglevels. The base topic of messages emitted by the PUBHandler
will be of the form: <handler.root_topic>.<loglevel>, e.g. myprogram.INFO or
‘whatever.ERROR’. This way, subscribers can easily subscribe to subsets of the logging
messages. Log messages are always two-part, where the first part is the topic tree, and
the second part is the actual log message.

logger.info("hello there")
print(sub.recv_multipart())

[b"myprogram.INFO", b"hello there"]

Subtopics

You can also add to the topic tree below the loglevel on an individual message basis.
Assuming your logger is connected to a PUBHandler, you can add as many additional topics
on the front of the message, which will be added always after the loglevel. A special
delimiter defined at zmq.log.handlers.TOPIC_DELIM is scanned by the PUBHandler, so if
you pass your own subtopics prior to that symbol, they will be stripped from the message
and added to the topic tree:

>>> log_msg = "hello there"
>>> subtopic = "sub.topic"
>>> msg = zmq.log.handlers.TOPIC_DELIM.join([subtopic, log_msg])
>>> logger.warn(msg)
>>> print sub.recv_multipart()
['myprogram.WARN.sub.topic', 'hello there']

Tunneling PyZMQ Connections with SSH

Added in version 2.1.9.

You may want to connect ØMQ sockets across machines, or untrusted networks. One common way
to do this is to tunnel the connection via SSH. IPython [https://ipython.org] introduced some tools for
tunneling ØMQ connections over ssh in simple cases. These functions have been brought into
pyzmq as zmq.ssh.tunnel under IPython’s BSD license.

PyZMQ will use the shell ssh command via pexpect [https://pexpect.readthedocs.io] by default, but it also supports
using paramiko [https://www.lag.net/paramiko/] for tunnels, so it should work on Windows.

An SSH tunnel has five basic components:

	server : the SSH server through which the tunnel will be created

	remote ip : the IP of the remote machine as seen from the server
(remote ip may be, but is not not generally the same machine as server).

	remote port : the port on the remote machine that you want to connect to.

	local ip : the interface on your local machine you want to use (default: 127.0.0.1)

	local port : the local port you want to forward to the remote port (default: high random)

So once you have established the tunnel, connections to localip:localport will actually
be connections to remoteip:remoteport.

In most cases, you have a zeromq url for a remote machine, but you need to tunnel the
connection through an ssh server. This is

So if you would use this command from the same LAN as the remote machine:

sock.connect("tcp://10.0.1.2:5555")

to make the same connection from another machine that is outside the network, but you have
ssh access to a machine server on the same LAN, you would simply do:

from zmq import ssh

ssh.tunnel_connection(sock, "tcp://10.0.1.2:5555", "server")

Note that "server" can actually be a fully specified "user@server:port" ssh url.
Since this really just launches a shell command, all your ssh configuration of usernames,
aliases, keys, etc. will be respected. If necessary, tunnel_connection() does take
arguments for specific passwords, private keys (the ssh -i option), and non-default
choice of whether to use paramiko.

If you are on the same network as the machine, but it is only listening on localhost, you
can still connect by making the machine itself the server, and using loopback as the
remote ip:

from zmq import ssh

ssh.tunnel_connection(sock, "tcp://127.0.0.1:5555", "10.0.1.2")

The tunnel_connection() function is a simple utility that forwards a random
localhost port to the real destination, and connects a socket to the new local url,
rather than the remote one that wouldn’t actually work.

See also

A short discussion of ssh tunnels: https://www.revsys.com/writings/quicktips/ssh-tunnel.html

 Python Module Index

 z

 		 	

 		
 z	

 	[image: -]
 	
 zmq	

 	
 	
 zmq.asyncio	

 	
 	
 zmq.auth	

 	
 	
 zmq.auth.asyncio	

 	
 	
 zmq.auth.ioloop	

 	
 	
 zmq.auth.thread	

 	
 	
 zmq.decorators	

 	
 	
 zmq.devices	

 	
 	
 zmq.eventloop.future	

 	
 	
 zmq.eventloop.ioloop	

 	
 	
 zmq.eventloop.zmqstream	

 	
 	
 zmq.green	

 	
 	
 zmq.log.handlers	

 	
 	
 zmq.ssh.tunnel	

 	
 	
 zmq.utils.jsonapi	

 	
 	
 zmq.utils.monitor	

 	
 	
 zmq.utils.win32	

 	
 	
 zmq.utils.z85	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Z

A

 	
 	ACCEPT_FAILED (zmq.Event attribute)

 	ACCEPTED (zmq.Event attribute)

 	acquire() (zmq.log.handlers.PUBHandler method)

 	add_note() (zmq.ZMQError method)

 	(zmq.ZMQVersionError method)

 	addFilter() (zmq.log.handlers.PUBHandler method)

 	(zmq.log.handlers.TopicLogger method)

 	addHandler() (zmq.log.handlers.TopicLogger method)

 	AFFINITY (zmq.SocketOption attribute)

 	AFTER_DISCONNECT (zmq.ReconnectStop attribute)

 	
 	Again (class in zmq)

 	allow() (zmq.auth.asyncio.AsyncioAuthenticator method)

 	(zmq.auth.Authenticator method)

 	(zmq.auth.thread.ThreadAuthenticator method)

 	allow_any (zmq.auth.asyncio.AsyncioAuthenticator attribute)

 	(zmq.auth.Authenticator attribute)

 	(zmq.auth.thread.ThreadAuthenticator attribute)

 	allow_interrupt (class in zmq.utils.win32)

 	AsyncioAuthenticator (class in zmq.auth.asyncio)

 	AuthenticationThread (class in zmq.auth.thread)

 	Authenticator (class in zmq.auth)

B

 	
 	BACKLOG (zmq.SocketOption attribute)

 	bind() (zmq.Socket method)

 	bind_ctrl() (zmq.devices.ProxySteerable method)

 	BIND_FAILED (zmq.Event attribute)

 	bind_in() (zmq.devices.Device method)

 	bind_in_to_random_port() (zmq.devices.Device method)

 	bind_mon() (zmq.devices.Proxy method)

 	
 	bind_out() (zmq.devices.Device method)

 	bind_out_to_random_port() (zmq.devices.Device method)

 	bind_to_random_port() (zmq.Socket method)

 	BINDTODEVICE (zmq.SocketOption attribute)

 	BLOCKY (zmq.SocketOption attribute)

 	buffer (zmq.Frame attribute)

 	BUSY_POLL (zmq.SocketOption attribute)

 	bytes (zmq.Frame attribute)

C

 	
 	callHandlers() (zmq.log.handlers.TopicLogger method)

 	CC (zmq.NormMode attribute)

 	CCE (zmq.NormMode attribute)

 	CCE_ECNONLY (zmq.NormMode attribute)

 	CCL (zmq.NormMode attribute)

 	certs (zmq.auth.asyncio.AsyncioAuthenticator attribute)

 	(zmq.auth.Authenticator attribute)

 	(zmq.auth.thread.ThreadAuthenticator attribute)

 	CHANNEL (zmq.SocketType attribute)

 	CLIENT (zmq.SocketType attribute)

 	close() (zmq.eventloop.zmqstream.ZMQStream method)

 	(zmq.log.handlers.PUBHandler method)

 	(zmq.Socket method)

 	CLOSE_FAILED (zmq.Event attribute)

 	closed (zmq.Context attribute)

 	CLOSED (zmq.Event attribute)

 	closed (zmq.Socket attribute)

 	closed() (zmq.eventloop.zmqstream.ZMQStream method)

 	configure_curve() (zmq.auth.asyncio.AsyncioAuthenticator method)

 	(zmq.auth.Authenticator method)

 	(zmq.auth.thread.ThreadAuthenticator method)

 	configure_curve_callback() (zmq.auth.asyncio.AsyncioAuthenticator method)

 	(zmq.auth.Authenticator method)

 	(zmq.auth.thread.ThreadAuthenticator method)

 	configure_gssapi() (zmq.auth.asyncio.AsyncioAuthenticator method)

 	(zmq.auth.Authenticator method)

 	(zmq.auth.thread.ThreadAuthenticator method)

 	configure_plain() (zmq.auth.asyncio.AsyncioAuthenticator method)

 	(zmq.auth.Authenticator method)

 	(zmq.auth.thread.ThreadAuthenticator method)

 	CONFLATE (zmq.SocketOption attribute)

 	CONN_REFUSED (zmq.ReconnectStop attribute)

 	CONNECT (zmq.RouterNotify attribute)

 	connect() (zmq.Socket method)

 	connect_ctrl() (zmq.devices.ProxySteerable method)

 	CONNECT_DELAYED (zmq.Event attribute)

 	
 	connect_in() (zmq.devices.Device method)

 	connect_mon() (zmq.devices.Proxy method)

 	connect_out() (zmq.devices.Device method)

 	CONNECT_RETRIED (zmq.Event attribute)

 	CONNECT_ROUTING_ID (zmq.SocketOption attribute)

 	CONNECT_TIMEOUT (zmq.SocketOption attribute)

 	CONNECTED (zmq.Event attribute)

 	Context (class in zmq)

 	(class in zmq.asyncio)

 	(class in zmq.eventloop.future)

 	context (zmq.auth.asyncio.AsyncioAuthenticator attribute)

 	(zmq.auth.Authenticator attribute)

 	(zmq.auth.thread.ThreadAuthenticator attribute)

 	context() (in module zmq.decorators)

 	context_factory (zmq.devices.Device attribute)

 	(zmq.devices.ProcessDevice attribute)

 	ContextTerminated (class in zmq)

 	COPY_THRESHOLD (in module zmq)

 	copy_threshold (zmq.Socket attribute)

 	create_certificates() (in module zmq.auth)

 	createLock() (zmq.log.handlers.PUBHandler method)

 	credentials_providers (zmq.auth.asyncio.AsyncioAuthenticator attribute)

 	(zmq.auth.Authenticator attribute)

 	(zmq.auth.thread.ThreadAuthenticator attribute)

 	critical() (zmq.log.handlers.TopicLogger method)

 	ctx (zmq.log.handlers.PUBHandler attribute)

 	CURVE (zmq.SecurityMechanism attribute)

 	curve_keypair() (in module zmq)

 	curve_public() (in module zmq)

 	CURVE_PUBLICKEY (zmq.SocketOption attribute)

 	CURVE_SECRETKEY (zmq.SocketOption attribute)

 	CURVE_SERVER (zmq.SocketOption attribute)

 	CURVE_SERVERKEY (zmq.SocketOption attribute)

 	curve_user_id() (zmq.auth.asyncio.AsyncioAuthenticator method)

 	(zmq.auth.Authenticator method)

 	(zmq.auth.thread.ThreadAuthenticator method)

D

 	
 	daemon (zmq.devices.Device attribute)

 	DEALER (zmq.SocketType attribute)

 	debug() (zmq.log.handlers.TopicLogger method)

 	decode() (in module zmq.utils.z85)

 	deny() (zmq.auth.asyncio.AsyncioAuthenticator method)

 	(zmq.auth.Authenticator method)

 	(zmq.auth.thread.ThreadAuthenticator method)

 	destroy() (zmq.Context method)

 	Device (class in zmq.devices)

 	device() (in module zmq)

 	
 	DGRAM (zmq.SocketType attribute)

 	disable_monitor() (zmq.Socket method)

 	DISCONNECT (zmq.RouterNotify attribute)

 	disconnect() (zmq.Socket method)

 	DISCONNECT_MSG (zmq.SocketOption attribute)

 	DISCONNECTED (zmq.Event attribute)

 	DISH (zmq.SocketType attribute)

 	done (zmq.MessageTracker property)

 	DONTWAIT (zmq.Flag attribute)

 	dumps() (in module zmq.utils.jsonapi)

E

 	
 	EADDRINUSE (zmq.Errno attribute)

 	EADDRNOTAVAIL (zmq.Errno attribute)

 	EAFNOSUPPORT (zmq.Errno attribute)

 	EAGAIN (zmq.Errno attribute)

 	ECONNABORTED (zmq.Errno attribute)

 	ECONNREFUSED (zmq.Errno attribute)

 	ECONNRESET (zmq.Errno attribute)

 	EFAULT (zmq.Errno attribute)

 	EFSM (zmq.Errno attribute)

 	EHOSTUNREACH (zmq.Errno attribute)

 	EINPROGRESS (zmq.Errno attribute)

 	EINVAL (zmq.Errno attribute)

 	emit() (zmq.log.handlers.PUBHandler method)

 	EMSGSIZE (zmq.Errno attribute)

 	EMTHREAD (zmq.Errno attribute)

 	encode() (in module zmq.utils.z85)

 	
 	encoding (zmq.auth.asyncio.AsyncioAuthenticator attribute)

 	(zmq.auth.Authenticator attribute)

 	(zmq.auth.thread.ThreadAuthenticator attribute)

 	ENETDOWN (zmq.Errno attribute)

 	ENETRESET (zmq.Errno attribute)

 	ENETUNREACH (zmq.Errno attribute)

 	ENOBUFS (zmq.Errno attribute)

 	ENOCOMPATPROTO (zmq.Errno attribute)

 	ENOTCONN (zmq.Errno attribute)

 	ENOTSOCK (zmq.Errno attribute)

 	ENOTSUP (zmq.Errno attribute)

 	EPROTONOSUPPORT (zmq.Errno attribute)

 	error() (zmq.log.handlers.TopicLogger method)

 	ETERM (zmq.Errno attribute)

 	ETIMEDOUT (zmq.Errno attribute)

 	EVENTS (zmq.SocketOption attribute)

 	exception() (zmq.log.handlers.TopicLogger method)

F

 	
 	fatal() (zmq.log.handlers.TopicLogger method)

 	FD (zmq.SocketOption attribute)

 	fileno() (zmq.Socket method)

 	filter() (zmq.log.handlers.PUBHandler method)

 	(zmq.log.handlers.TopicLogger method)

 	findCaller() (zmq.log.handlers.TopicLogger method)

 	
 	FIXED (zmq.NormMode attribute)

 	flush() (zmq.eventloop.zmqstream.ZMQStream method)

 	(zmq.log.handlers.PUBHandler method)

 	format() (zmq.log.handlers.PUBHandler method)

 	FORWARDER (zmq.DeviceType attribute)

 	Frame (class in zmq)

G

 	
 	GATHER (zmq.SocketType attribute)

 	get() (zmq.Context method)

 	(zmq.Frame method)

 	(zmq.Socket method)

 	get_hwm() (zmq.Socket method)

 	get_includes() (in module zmq)

 	get_library_dirs() (in module zmq)

 	get_monitor_socket() (zmq.Socket method)

 	get_name() (zmq.log.handlers.PUBHandler method)

 	get_string() (zmq.Socket method)

 	getChild() (zmq.log.handlers.TopicLogger method)

 	
 	getEffectiveLevel() (zmq.log.handlers.TopicLogger method)

 	getsockopt() (zmq.Context method)

 	(zmq.Socket method)

 	getsockopt_string() (zmq.Socket method)

 	group (zmq.Frame property)

 	GSSAPI (zmq.SecurityMechanism attribute)

 	GSSAPI_PLAINTEXT (zmq.SocketOption attribute)

 	GSSAPI_PRINCIPAL (zmq.SocketOption attribute)

 	GSSAPI_PRINCIPAL_NAMETYPE (zmq.SocketOption attribute)

 	GSSAPI_SERVER (zmq.SocketOption attribute)

 	GSSAPI_SERVICE_PRINCIPAL (zmq.SocketOption attribute)

 	GSSAPI_SERVICE_PRINCIPAL_NAMETYPE (zmq.SocketOption attribute)

H

 	
 	handle() (zmq.log.handlers.PUBHandler method)

 	(zmq.log.handlers.TopicLogger method)

 	handle_zap_message() (zmq.auth.asyncio.AsyncioAuthenticator method)

 	(zmq.auth.Authenticator method)

 	(zmq.auth.thread.ThreadAuthenticator method)

 	handleError() (zmq.log.handlers.PUBHandler method)

 	HANDSHAKE_FAILED (zmq.ReconnectStop attribute)

 	HANDSHAKE_FAILED_AUTH (zmq.Event attribute)

 	HANDSHAKE_FAILED_NO_DETAIL (zmq.Event attribute)

 	HANDSHAKE_FAILED_PROTOCOL (zmq.Event attribute)

 	
 	HANDSHAKE_IVL (zmq.SocketOption attribute)

 	HANDSHAKE_SUCCEEDED (zmq.Event attribute)

 	has() (in module zmq)

 	hasHandlers() (zmq.log.handlers.TopicLogger method)

 	HEARTBEAT_IVL (zmq.SocketOption attribute)

 	HEARTBEAT_TIMEOUT (zmq.SocketOption attribute)

 	HEARTBEAT_TTL (zmq.SocketOption attribute)

 	HELLO_MSG (zmq.SocketOption attribute)

 	HICCUP_MSG (zmq.SocketOption attribute)

 	hwm (zmq.Socket property)

 	HWM (zmq.SocketOption attribute)

I

 	
 	IMMEDIATE (zmq.SocketOption attribute)

 	IN_BATCH_SIZE (zmq.SocketOption attribute)

 	info() (zmq.log.handlers.TopicLogger method)

 	instance() (zmq.Context class method)

 	INVERT_MATCHING (zmq.SocketOption attribute)

 	io_loop (zmq.eventloop.zmqstream.ZMQStream attribute)

 	IO_THREADS (zmq.ContextOption attribute)

 	
 	IPC_FILTER_GID (zmq.SocketOption attribute)

 	IPC_FILTER_PID (zmq.SocketOption attribute)

 	IPC_FILTER_UID (zmq.SocketOption attribute)

 	IPV4ONLY (zmq.SocketOption attribute)

 	IPV6 (zmq.SocketOption attribute)

 	is_alive() (zmq.auth.thread.ThreadAuthenticator method)

 	isEnabledFor() (zmq.log.handlers.TopicLogger method)

J

 	
 	join() (zmq.devices.Device method)

 	(zmq.Socket method)

L

 	
 	LAST_ENDPOINT (zmq.SocketOption attribute)

 	leave() (zmq.Socket method)

 	LINGER (zmq.SocketOption attribute)

 	LISTENING (zmq.Event attribute)

 	load_certificate() (in module zmq.auth)

 	load_certificates() (in module zmq.auth)

 	
 	loads() (in module zmq.utils.jsonapi)

 	log (zmq.auth.asyncio.AsyncioAuthenticator attribute)

 	(zmq.auth.Authenticator attribute)

 	(zmq.auth.thread.ThreadAuthenticator attribute)

 	log() (zmq.log.handlers.TopicLogger method)

 	LOOPBACK_FASTPATH (zmq.SocketOption attribute)

M

 	
 	makeRecord() (zmq.log.handlers.TopicLogger method)

 	manager (zmq.log.handlers.TopicLogger attribute)

 	MAX_MSGSZ (zmq.ContextOption attribute)

 	MAX_SOCKETS (zmq.ContextOption attribute)

 	MAXMSGSIZE (zmq.SocketOption attribute)

 	MECHANISM (zmq.SocketOption attribute)

 	MessageTracker (class in zmq)

 	METADATA (zmq.SocketOption attribute)

 	modify() (zmq.Poller method)

 	
 module

 	zmq

 	zmq.asyncio

 	zmq.auth

 	zmq.auth.asyncio

 	zmq.auth.ioloop

 	zmq.auth.thread

 	zmq.decorators

 	zmq.devices

 	zmq.eventloop.future

 	zmq.eventloop.ioloop

 	zmq.eventloop.zmqstream

 	zmq.green

 	zmq.log.handlers

 	zmq.ssh.tunnel

 	zmq.utils.jsonapi

 	zmq.utils.monitor

 	zmq.utils.win32

 	zmq.utils.z85

 	
 	monitor() (zmq.Socket method)

 	MONITOR_STOPPED (zmq.Event attribute)

 	monitored_queue() (in module zmq.devices)

 	MonitoredQueue (class in zmq.devices)

 	MORE (zmq.MessageOption attribute)

 	MSG_T_SIZE (zmq.ContextOption attribute)

 	MULTICAST_HOPS (zmq.SocketOption attribute)

 	MULTICAST_LOOP (zmq.SocketOption attribute)

 	MULTICAST_MAXTPDU (zmq.SocketOption attribute)

N

 	
 	name (zmq.log.handlers.PUBHandler property)

 	NORM_BLOCK_SIZE (zmq.SocketOption attribute)

 	NORM_BUFFER_SIZE (zmq.SocketOption attribute)

 	NORM_MODE (zmq.SocketOption attribute)

 	NORM_NUM_AUTOPARITY (zmq.SocketOption attribute)

 	
 	NORM_NUM_PARITY (zmq.SocketOption attribute)

 	NORM_PUSH (zmq.SocketOption attribute)

 	NORM_SEGMENT_SIZE (zmq.SocketOption attribute)

 	NORM_UNICAST_NACK (zmq.SocketOption attribute)

 	NotDone (class in zmq)

 	NULL (zmq.SecurityMechanism attribute)

O

 	
 	on_err() (zmq.eventloop.zmqstream.ZMQStream method)

 	on_recv() (zmq.eventloop.zmqstream.ZMQStream method)

 	on_recv_stream() (zmq.eventloop.zmqstream.ZMQStream method)

 	on_send() (zmq.eventloop.zmqstream.ZMQStream method)

 	
 	on_send_stream() (zmq.eventloop.zmqstream.ZMQStream method)

 	ONLY_FIRST_SUBSCRIBE (zmq.SocketOption attribute)

 	open_tunnel() (in module zmq.ssh.tunnel)

 	OUT_BATCH_SIZE (zmq.SocketOption attribute)

P

 	
 	PAIR (zmq.SocketType attribute)

 	parse_monitor_message() (in module zmq.utils.monitor)

 	passwords (zmq.auth.asyncio.AsyncioAuthenticator attribute)

 	(zmq.auth.Authenticator attribute)

 	(zmq.auth.thread.ThreadAuthenticator attribute)

 	PEER (zmq.SocketType attribute)

 	pipe (zmq.auth.thread.ThreadAuthenticator attribute)

 	pipe_endpoint (zmq.auth.thread.ThreadAuthenticator attribute)

 	PIPES_STATS (zmq.Event attribute)

 	PLAIN (zmq.SecurityMechanism attribute)

 	PLAIN_PASSWORD (zmq.SocketOption attribute)

 	PLAIN_SERVER (zmq.SocketOption attribute)

 	PLAIN_USERNAME (zmq.SocketOption attribute)

 	poll() (zmq.asyncio.Poller method)

 	(zmq.asyncio.Socket method)

 	(zmq.Poller method)

 	(zmq.Socket method)

 	Poller (class in zmq)

 	(class in zmq.asyncio)

 	(class in zmq.eventloop.future)

 	poller (zmq.eventloop.zmqstream.ZMQStream attribute)

 	
 	POLLERR (zmq.PollEvent attribute)

 	POLLIN (zmq.PollEvent attribute)

 	POLLOUT (zmq.PollEvent attribute)

 	POLLPRI (zmq.PollEvent attribute)

 	PRIORITY (zmq.SocketOption attribute)

 	PROBE_ROUTER (zmq.SocketOption attribute)

 	ProcessDevice (class in zmq.devices)

 	ProcessMonitoredQueue (class in zmq.devices)

 	ProcessProxy (class in zmq.devices)

 	ProcessProxySteerable (class in zmq.devices)

 	PROTOCOL_ERROR_ZAP_UNSPECIFIED (zmq.Event attribute)

 	PROTOCOL_ERROR_ZMTP_UNSPECIFIED (zmq.Event attribute)

 	Proxy (class in zmq.devices)

 	proxy() (in module zmq)

 	proxy_steerable() (in module zmq)

 	ProxySteerable (class in zmq.devices)

 	PUB (zmq.SocketType attribute)

 	PUBHandler (class in zmq.log.handlers)

 	PULL (zmq.SocketType attribute)

 	PUSH (zmq.SocketType attribute)

 	pyzmq_version() (in module zmq)

 	pyzmq_version_info() (in module zmq)

Q

 	
 	QUEUE (zmq.DeviceType attribute)

R

 	
 	RADIO (zmq.SocketType attribute)

 	RATE (zmq.SocketOption attribute)

 	RCVBUF (zmq.SocketOption attribute)

 	RCVHWM (zmq.SocketOption attribute)

 	RCVMORE (zmq.SocketOption attribute)

 	RCVTIMEO (zmq.SocketOption attribute)

 	receiving() (zmq.eventloop.zmqstream.ZMQStream method)

 	RECONNECT_IVL (zmq.SocketOption attribute)

 	RECONNECT_IVL_MAX (zmq.SocketOption attribute)

 	RECONNECT_STOP (zmq.SocketOption attribute)

 	RECOVERY_IVL (zmq.SocketOption attribute)

 	recv() (zmq.asyncio.Socket method)

 	(zmq.Socket method)

 	recv_json() (zmq.Socket method)

 	recv_monitor_message() (in module zmq.utils.monitor)

 	recv_multipart() (zmq.asyncio.Socket method)

 	(zmq.Socket method)

 	recv_pyobj() (zmq.Socket method)

 	recv_serialized() (zmq.Socket method)

 	
 	recv_string() (zmq.Socket method)

 	register() (zmq.Poller method)

 	release() (zmq.log.handlers.PUBHandler method)

 	removeFilter() (zmq.log.handlers.PUBHandler method)

 	(zmq.log.handlers.TopicLogger method)

 	removeHandler() (zmq.log.handlers.TopicLogger method)

 	REP (zmq.SocketType attribute)

 	REQ (zmq.SocketType attribute)

 	REQ_CORRELATE (zmq.SocketOption attribute)

 	REQ_RELAXED (zmq.SocketOption attribute)

 	root (zmq.log.handlers.TopicLogger attribute)

 	root_topic (zmq.log.handlers.PUBHandler property)

 	ROUTER (zmq.SocketType attribute)

 	ROUTER_HANDOVER (zmq.SocketOption attribute)

 	ROUTER_MANDATORY (zmq.SocketOption attribute)

 	ROUTER_NOTIFY (zmq.SocketOption attribute)

 	ROUTER_RAW (zmq.SocketOption attribute)

 	routing_id (zmq.Frame property)

 	ROUTING_ID (zmq.SocketOption attribute)

S

 	
 	SCATTER (zmq.SocketType attribute)

 	select() (in module zmq)

 	select_random_ports() (in module zmq.ssh.tunnel)

 	send() (zmq.asyncio.Socket method)

 	(zmq.eventloop.zmqstream.ZMQStream method)

 	(zmq.Socket method)

 	send_json() (zmq.eventloop.zmqstream.ZMQStream method)

 	(zmq.Socket method)

 	send_multipart() (zmq.asyncio.Socket method)

 	(zmq.eventloop.zmqstream.ZMQStream method)

 	(zmq.Socket method)

 	send_pyobj() (zmq.eventloop.zmqstream.ZMQStream method)

 	(zmq.Socket method)

 	send_serialized() (zmq.Socket method)

 	send_string() (zmq.eventloop.zmqstream.ZMQStream method)

 	(zmq.Socket method)

 	send_unicode() (zmq.eventloop.zmqstream.ZMQStream method)

 	sending() (zmq.eventloop.zmqstream.ZMQStream method)

 	SERVER (zmq.SocketType attribute)

 	set() (zmq.Context method)

 	(zmq.Frame method)

 	(zmq.Socket method)

 	set_close_callback() (zmq.eventloop.zmqstream.ZMQStream method)

 	set_hwm() (zmq.Socket method)

 	set_name() (zmq.log.handlers.PUBHandler method)

 	set_string() (zmq.Socket method)

 	setFormatter() (zmq.log.handlers.PUBHandler method)

 	setLevel() (zmq.log.handlers.PUBHandler method)

 	(zmq.log.handlers.TopicLogger method)

 	setRootTopic() (zmq.log.handlers.PUBHandler method)

 	setsockopt() (zmq.Context method)

 	(zmq.Socket method)

 	setsockopt_ctrl() (zmq.devices.ProxySteerable method)

 	setsockopt_in() (zmq.devices.Device method)

 	setsockopt_mon() (zmq.devices.Proxy method)

 	setsockopt_out() (zmq.devices.Device method)

 	setsockopt_string() (zmq.Socket method)

 	
 	shadow() (zmq.Context class method)

 	(zmq.Socket class method)

 	shadow_pyczmq() (zmq.Context class method)

 	SHARED (zmq.MessageOption attribute)

 	SNDBUF (zmq.SocketOption attribute)

 	SNDHWM (zmq.SocketOption attribute)

 	SNDMORE (zmq.Flag attribute)

 	SNDTIMEO (zmq.SocketOption attribute)

 	Socket (class in zmq)

 	(class in zmq.asyncio)

 	(class in zmq.eventloop.future)

 	socket (zmq.eventloop.zmqstream.ZMQStream attribute)

 	(zmq.log.handlers.PUBHandler attribute)

 	socket() (in module zmq.decorators)

 	(zmq.Context method)

 	SOCKET_LIMIT (zmq.ContextOption attribute)

 	SOCKS_PASSWORD (zmq.SocketOption attribute)

 	SOCKS_PROXY (zmq.SocketOption attribute)

 	SOCKS_USERNAME (zmq.SocketOption attribute)

 	SRCFD (zmq.MessageOption attribute)

 	start() (zmq.auth.asyncio.AsyncioAuthenticator method)

 	(zmq.auth.Authenticator method)

 	(zmq.auth.thread.ThreadAuthenticator method)

 	(zmq.devices.Device method)

 	stop() (zmq.auth.asyncio.AsyncioAuthenticator method)

 	(zmq.auth.Authenticator method)

 	(zmq.auth.thread.ThreadAuthenticator method)

 	stop_on_err() (zmq.eventloop.zmqstream.ZMQStream method)

 	stop_on_recv() (zmq.eventloop.zmqstream.ZMQStream method)

 	stop_on_send() (zmq.eventloop.zmqstream.ZMQStream method)

 	STREAM (zmq.SocketType attribute)

 	STREAM_NOTIFY (zmq.SocketOption attribute)

 	STREAMER (zmq.DeviceType attribute)

 	strerror() (in module zmq)

 	SUB (zmq.SocketType attribute)

 	SUBSCRIBE (zmq.SocketOption attribute)

 	subscribe() (zmq.Socket method)

T

 	
 	TCP_ACCEPT_FILTER (zmq.SocketOption attribute)

 	TCP_KEEPALIVE (zmq.SocketOption attribute)

 	TCP_KEEPALIVE_CNT (zmq.SocketOption attribute)

 	TCP_KEEPALIVE_IDLE (zmq.SocketOption attribute)

 	TCP_KEEPALIVE_INTVL (zmq.SocketOption attribute)

 	TCP_MAXRT (zmq.SocketOption attribute)

 	term() (zmq.Context method)

 	thread (zmq.auth.thread.ThreadAuthenticator attribute)

 	THREAD_AFFINITY_CPU_ADD (zmq.ContextOption attribute)

 	THREAD_AFFINITY_CPU_REMOVE (zmq.ContextOption attribute)

 	THREAD_NAME_PREFIX (zmq.ContextOption attribute)

 	THREAD_SAFE (zmq.SocketOption attribute)

 	
 	THREAD_SCHED_POLICY (zmq.ContextOption attribute)

 	ThreadAuthenticator (class in zmq.auth.thread)

 	ThreadDevice (class in zmq.devices)

 	ThreadMonitoredQueue (class in zmq.devices)

 	ThreadProxy (class in zmq.devices)

 	ThreadProxySteerable (class in zmq.devices)

 	TopicLogger (class in zmq.log.handlers)

 	TOPICS_COUNT (zmq.SocketOption attribute)

 	TOS (zmq.SocketOption attribute)

 	try_passwordless_ssh() (in module zmq.ssh.tunnel)

 	tunnel_connection() (in module zmq.ssh.tunnel)

 	TYPE (zmq.SocketOption attribute)

U

 	
 	unbind() (zmq.Socket method)

 	underlying (zmq.Context attribute)

 	(zmq.Socket attribute)

 	
 	unregister() (zmq.Poller method)

 	UNSUBSCRIBE (zmq.SocketOption attribute)

 	unsubscribe() (zmq.Socket method)

 	USE_FD (zmq.SocketOption attribute)

V

 	
 	VMCI_BUFFER_MAX_SIZE (zmq.SocketOption attribute)

 	VMCI_BUFFER_MIN_SIZE (zmq.SocketOption attribute)

 	
 	VMCI_BUFFER_SIZE (zmq.SocketOption attribute)

 	VMCI_CONNECT_TIMEOUT (zmq.SocketOption attribute)

W

 	
 	wait() (zmq.MessageTracker method)

 	warn() (zmq.log.handlers.TopicLogger method)

 	warning() (zmq.log.handlers.TopicLogger method)

 	with_traceback() (zmq.ZMQError method)

 	(zmq.ZMQVersionError method)

 	
 	WSS_CERT_PEM (zmq.SocketOption attribute)

 	WSS_HOSTNAME (zmq.SocketOption attribute)

 	WSS_KEY_PEM (zmq.SocketOption attribute)

 	WSS_TRUST_PEM (zmq.SocketOption attribute)

 	WSS_TRUST_SYSTEM (zmq.SocketOption attribute)

X

 	
 	XPUB (zmq.SocketType attribute)

 	XPUB_MANUAL (zmq.SocketOption attribute)

 	XPUB_MANUAL_LAST_VALUE (zmq.SocketOption attribute)

 	XPUB_NODROP (zmq.SocketOption attribute)

 	
 	XPUB_VERBOSE (zmq.SocketOption attribute)

 	XPUB_VERBOSER (zmq.SocketOption attribute)

 	XPUB_WELCOME_MSG (zmq.SocketOption attribute)

 	XSUB (zmq.SocketType attribute)

 	XSUB_VERBOSE_UNSUBSCRIBE (zmq.SocketOption attribute)

Z

 	
 	ZAP_DOMAIN (zmq.SocketOption attribute)

 	ZAP_ENFORCE_DOMAIN (zmq.SocketOption attribute)

 	zap_socket (zmq.auth.asyncio.AsyncioAuthenticator attribute)

 	(zmq.auth.Authenticator attribute)

 	(zmq.auth.thread.ThreadAuthenticator attribute)

 	
 zmq

 	module

 	
 zmq.asyncio

 	module

 	
 zmq.auth

 	module

 	
 zmq.auth.asyncio

 	module

 	
 zmq.auth.ioloop

 	module

 	
 zmq.auth.thread

 	module

 	
 zmq.decorators

 	module

 	
 zmq.devices

 	module

 	
 zmq.eventloop.future

 	module

 	
 	
 zmq.eventloop.ioloop

 	module

 	
 zmq.eventloop.zmqstream

 	module

 	
 zmq.green

 	module

 	
 zmq.log.handlers

 	module

 	
 zmq.ssh.tunnel

 	module

 	
 zmq.utils.jsonapi

 	module

 	
 zmq.utils.monitor

 	module

 	
 zmq.utils.win32

 	module

 	
 zmq.utils.z85

 	module

 	zmq_version() (in module zmq)

 	zmq_version_info() (in module zmq)

 	ZMQBindError (class in zmq)

 	ZMQError (class in zmq)

 	ZMQStream (class in zmq.eventloop.zmqstream)

 	ZMQVersionError (class in zmq)

 _static/logo.png

_static/minus.png

_static/file.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 PyZMQ Documentation

 		
 The PyZMQ API

 		
 zmq

 		
 Basic Classes

 		
 Polling

 		
 Constants

 		
 Exceptions

 		
 Functions

 		
 devices

 		
 Functions

 		
 Module: zmq.devices

 		
 Base Devices

 		
 Proxy Devices

 		
 MonitoredQueue Devices

 		
 decorators

 		
 Module: zmq.decorators

 		
 Decorators

 		
 green

 		
 Module: zmq.green

 		
 eventloop.ioloop

 		
 Module: zmq.eventloop.ioloop

 		
 eventloop.future

 		
 Module: zmq.eventloop.future

 		
 Classes

 		
 asyncio

 		
 Module: zmq.asyncio

 		
 Classes

 		
 eventloop.zmqstream

 		
 Module: zmq.eventloop.zmqstream

 		
 ZMQStream

 		
 auth

 		
 Module: zmq.auth

 		
 Authenticator

 		
 Functions

 		
 auth.asyncio

 		
 Module: zmq.auth.asyncio

 		
 Classes

 		
 auth.thread

 		
 Module: zmq.auth.thread

 		
 Classes

 		
 auth.ioloop

 		
 Module: :mod}`zmq.auth.ioloop`

 		
 log.handlers

 		
 Module: zmq.log.handlers

 		
 Classes

 		
 ssh.tunnel

 		
 Module: zmq.ssh.tunnel

 		
 Functions

 		
 utils.jsonapi

 		
 Module: zmq.utils.jsonapi

 		
 Functions

 		
 utils.monitor

 		
 Module: zmq.utils.monitor

 		
 Functions

 		
 utils.z85

 		
 Module: zmq.utils.z85

 		
 Functions

 		
 utils.win32

 		
 Module: zmq.utils.win32

 		
 allow_interrupt

 		
 Changes in PyZMQ

 		
 26

 		
 26.0.2

 		
 26.0.1

 		
 26.0.0

 		
 25

 		
 25.1.2

 		
 25.1.1

 		
 25.1.0

 		
 25.0.2

 		
 25.0.1

 		
 25.0.0

 		
 24

 		
 24.0.1

 		
 24.0.0

 		
 23.2.1

 		
 23.2.0

 		
 23.1.0

 		
 23.0.0

 		
 22.3.0

 		
 22.2.1

 		
 22.2.0

 		
 22.1.0

 		
 22.0.3

 		
 22.0.2

 		
 22.0.1

 		
 22.0.0

 		
 21.0.2

 		
 21.0.1

 		
 21.0

 		
 20.0

 		
 19.0.2

 		
 19.0.1

 		
 19.0

 		
 18.1.1

 		
 18.1.0

 		
 18.0.2

 		
 18.0.1

 		
 18.0.0

 		
 17.1.3

 		
 17.1.2

 		
 17.1.0

 		
 17.0.0

 		
 16.0.4

 		
 16.0.3

 		
 16.0.2

 		
 16.0.1

 		
 16.0

 		
 15.4

 		
 15.3

 		
 15.2

 		
 15.1

 		
 15.0

 		
 14.7.0

 		
 14.6.0

 		
 14.5.0

 		
 14.4.1

 		
 14.4.0

 		
 14.3.1

 		
 14.3.0

 		
 14.2.0

 		
 New Stuff

 		
 Bugs Fixed

 		
 14.1.0

 		
 Security

 		
 Other New Stuff

 		
 Deprecations

 		
 14.0.1

 		
 14.0.0

 		
 New stuff

 		
 13.1.0

 		
 13.0.2

 		
 13.0.1

 		
 13.0.0

 		
 Experiments Removed

 		
 New Stuff

 		
 Bugs Fixed

 		
 2.2.0.1

 		
 Experimental New Stuff

 		
 Bugs Fixed

 		
 2.2.0

 		
 Name Changes

 		
 Other Changes and Removals

 		
 New Stuff

 		
 Experimental New Stuff

 		
 2.1.11

 		
 2.1.10

 		
 2.1.9

 		
 2.1.7.1

 		
 2.1.7

 		
 2.1.4

 		
 Using PyZMQ

 		
 Building pyzmq

 		
 Installing from source

 		
 Examples

 		
 Finding libzmq

 		
 Building bundled libzmq

 		
 Passing arguments

 		
 Cross-compiling pyzmq

 		
 More Than Just Bindings

 		
 The Core as Bindings

 		
 Thread Safety

 		
 Socket Options as Attributes

 		
 libzmq constants as Enums

 		
 Context managers

 		
 Core Extensions

 		
 Extensions

 		
 Serializing messages with PyZMQ

 		
 Builtin serialization

 		
 Using your own serialization

 		
 Devices in PyZMQ

 		
 BackgroundDevices

 		
 MonitoredQueue

 		
 Eventloops and PyZMQ

 		
 AsyncIO

 		
 Tornado IOLoop

 		
 PyZMQ and gevent

 		
 Working with libzmq DRAFT sockets

 		
 Asynchronous Logging via PyZMQ

 		
 Getting Started

 		
 PUB/SUB and Topics

 		
 PUBHandler

 		
 Tunneling PyZMQ Connections with SSH

