PyZMQ Documentation
Release 18.0.2

Brian E. Granger Min Ragan-Kelley

Jul 11, 2019

Contents

1 Supported LibZMQ

2 Using PyZMQ

2.1 ThePyZMQ APL o
2.2 Changes in PYZMQ L e e e e e e
2.3 Working with libzmq DRAFT sockets e
24 More ThanJust Bindings L e
2.5 Serializing messages with PyZMQ e
2.6 Devicesin PyZMQ e
2.7 Eventloops and PYZMQ e e e e e e
2.8 Asynchronous Logging viaPyZMQ e e
2.9 Tunneling PyZMQ Connections with SSH L oo
3 Notes from developing PyZMQ
3.1 PyZMQ, Python2.5,and Python3
32 PyZMQand Unicode L i e e e e e e e e e

4 Indices and tables
5 Links
Bibliography

Python Module Index

Index

77

79

81

83

85

PyZMQ Documentation, Release 18.0.2

Release 18.0.2
Date Jul 11, 2019

PyZMQ is the Python bindings for @®MQ. This documentation currently contains notes on some important aspects of
developing PyZMQ and an overview of what the @MQ API looks like in Python. For information on how to use GMQ
in general, see the many examples in the excellent @MQ Guide, all of which have a version in Python.

PyZMQ works with Python 3 (3.3), and Python 2.7, with no transformations or 2to3, as well as PyPy (at least 2.0
beta), via CFFIL.

Please don’t hesitate to report pyzmg-specific issues to our tracker on GitHub. General questions about @MQ are
better sent to the @MQ tracker or mailing list.

Changes in PyZMQ

Contents 1

http://www.zeromq.org
http://zguide.zeromq.org
https://www.github.com/zeromq/pyzmq/issues
https://github.com/zeromq/libzmq/issues
http://www.zeromq.org/docs:mailing-lists

PyZMQ Documentation, Release 18.0.2

2 Contents

CHAPTER 1

Supported LibZMQ

PyZMQ aims to support all stable (2.1.4, 3.2.2, 4.0.1) and active development (4.2.0) versions of libzmq. Building
the same pyzmgq against various versions of libzmgq is supported, but only the functionality of the linked libzmq will
be available.

Note: libzmq 3.0-3.1 are not, and will never be supported. There never was a stable release of either.

Binary distributions (wheels on PyPI or GitHub) of PyZMQ ship with the stable version of libzmq at the time of
release, built with default configuration, and include CURVE support provided by tweetnacl. For pyzmq-18.0.2, this
is4.3.1.

http://pypi.python.org/pypi/pyzmq
https://www.github.com/zeromq/pyzmq/downloads

PyZMQ Documentation, Release 18.0.2

4 Chapter 1. Supported LibZMQ

CHAPTER 2

Using PyZMQ

2.1 The PyZMQ API

Release 18.0.2
Date Jul 11, 2019

2.1.1 zmq

Python bindings for OMQ.

Basic Classes

Context

class zmqg.Context (io_threads=1, **kwargs)
Create a zmq Context

A zmq Context creates sockets via its ct x . socket method.

closed
boolean - whether the context has been terminated. If True, you can no longer use this Context.

destroy
Close all sockets associated with this context, and then terminate the context. If linger is specified, the
LINGER sockopt of the sockets will be set prior to closing.

Warning: destroy involves calling zmg_close (), which is NOT threadsafe. If there are active
sockets in other threads, this must not be called.

PyZMQ Documentation, Release 18.0.2

get
Get the value of a context option.

See the 0OMQ API documentation for zmq_ctx_get for details on specific options.
New in version libzmg-3.2.
New in version 13.0.

Parameters option (int)— The option to get. Available values will depend on your version
of libzmq. Examples include:

zmg.IO_THREADS, zmg.MAX_SOCKETS

Returns optval — The value of the option as an integer.
Return type int

getsockopt (opt)
get default socket options for new sockets created by this Context

New in version 13.0.

classmethod instance (io_threads=1)
Returns a global Context instance.

Most single-threaded applications have a single, global Context. Use this method instead of passing around
Context instances throughout your code.

A common pattern for classes that depend on Contexts is to use a default argument to enable programs
with multiple Contexts but not require the argument for simpler applications:

class MyClass(object):
def __init__(self, context=None): self.context = context or Context.instance()

set
Set a context option.

See the 0MQ API documentation for zmq_ctx_set for details on specific options.
New in version libzmq-3.2.
New in version 13.0.

Parameters

* option (int) — The option to set. Available values will depend on your version of
libzmq. Examples include:

zmg.IO_THREADS, zmqg.MAX_SOCKETS

* optval (int)— The value of the option to set.

setsockopt (opt, value)
set default socket options for new sockets created by this Context

New in version 13.0.

classmethod shadow (address)
Shadow an existing libzmq context

address is the integer address of the libzmq context or an FFI pointer to it.

New in version 14.1.

6 Chapter 2. Using PyZMQ

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PyZMQ Documentation, Release 18.0.2

classmethod shadow_pyczmq (ctx)
Shadow an existing pyczmq context

ctx is the FFI zctx_t * pointer
New in version 14.1.

socket (socket_type, **kwargs)
Create a Socket associated with this Context.

Parameters

* socket_type (int) — The socket type, which can be any of the OMQ socket types:
REQ, REP, PUB, SUB, PAIR, DEALER, ROUTER, PULL, PUSH, etc.

* kwargs — will be passed to the __init__ method of the socket class.

term
Close or terminate the context.

This can be called to close the context by hand. If this is not called, the context will automatically be
closed when it is garbage collected.

underlying
The address of the underlying libzmq context

Socket

class zmqg.Socket (*a, **kw)
The ZMQ socket object

To create a Socket, first create a Context:

’ctx = zmqg.Context.instance ()

then call ctx.socket (socket_type):

’s = ctx.socket (zmg.ROUTER)

closed
boolean - whether the socket has been closed. If True, you can no longer use this Socket.

copy_threshold
integer - size (in bytes) below which messages should always be copied. Zero-copy support has nontrivial
overhead due to the need to coordinate garbage collection with the libzmq IO thread, so sending small
messages (typically < 10s of kB) with copy=False is often more expensive than with copy=True.
The initial default value is 65536 (64kB), a reasonable default based on testing.

Defaults to zmg.COPY_THRESHOLD on socket construction. Setting zmg.COPY_THRESHOLD will
define the default value for any subsequently created sockets.

New in version 17.

bind
Bind the socket to an address.

This causes the socket to listen on a network port. Sockets on the other side of this connection will use
Socket .connect (addr) to connect to this socket.

Parameters addr (st r)— The address string. This has the form ‘protocol://interface:port’, for
example ‘tcp://127.0.0.1:5555°. Protocols supported include tcp, udp, pgm, epgm, inproc
and ipc. If the address is unicode, it is encoded to utf-8 first.

2.1. The PyZMQ API 7

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

PyZMQ Documentation, Release 18.0.2

bind_to_random_port (addr, min_port=49152, max_port=65536, max_tries=100)
Bind this socket to a random port in a range.

If the port range is unspecified, the system will choose the port.
Parameters
* addr (str)— The address string without the port to pass to Socket .bind ().

* min_port (int, optional)-— The minimum port in the range of ports to try (inclu-
sive).

* max_port (int, optional)-The maximum port in the range of ports to try (exclu-
sive).

* max_tries (int, optional)- The maximum number of bind attempts to make.
Returns port — The port the socket was bound to.
Return type int

Raises ZMOBindError — if max_tries reached before successful bind

close
Close the socket.

If linger is specified, LINGER sockopt will be set prior to closing.

This can be called to close the socket by hand. If this is not called, the socket will automatically be closed
when it is garbage collected.

connect
Connect to a remote OMQ socket.

Parameters addr (st r)— The address string. This has the form ‘protocol://interface:port’, for
example ‘tcp://127.0.0.1:5555’. Protocols supported are tcp, upd, pgm, inproc and ipc. If the
address is unicode, it is encoded to utf-8 first.

disable_monitor ()
Shutdown the PAIR socket (created using get_monitor_socket) that is serving socket events.

New in version 14.4.

disconnect
Disconnect from a remote 0OMQ socket (undoes a call to connect).

New in version libzmg-3.2.
New in version 13.0.

Parameters addr (str)— The address string. This has the form ‘protocol://interface:port’, for
example ‘tcp://127.0.0.1:5555’. Protocols supported are tcp, upd, pgm, inproc and ipc. If the
address is unicode, it is encoded to utf-8 first.

fileno ()
Return edge-triggered file descriptor for this socket.

This is a read-only edge-triggered file descriptor for both read and write events on this socket. It is im-
portant that all available events be consumed when an event is detected, otherwise the read event will not
trigger again.

New in version 17.0.

get
Get the value of a socket option.

8 Chapter 2. Using PyZMQ

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyZMQ Documentation, Release 18.0.2

See the 0OMQ API documentation for details on specific options.
Parameters option (int)— The option to get. Available values will depend on your version
of libzmq. Examples include:

zmg.IDENTITY, HWM, LINGER, FD, EVENTS

Returns optval — The value of the option as a bytestring or int.
Return type int or bytes

get_hwm ()
Get the High Water Mark.

On libzmq 3, this gets SNDHWM if available, otherwise RCVHWM

get_monitor_ socket (events=None, addr=None)
Return a connected PAIR socket ready to receive the event notifications.

New in version libzmq-4.0.
New in version 14.0.

Parameters
e events (int [default: ZMQ EVENT_ALL]) — The bitmask defining which
events are wanted.
* addr (string [default: None]) — The optional endpoint for the monitoring
sockets.

Returns socket — The socket is already connected and ready to receive messages.

Return type (PAIR)

get_string (option, encoding="utf-8’)
Get the value of a socket option.

See the OMQ documentation for details on specific options.
Parameters option (int)— The option to retrieve.
Returns optval — The value of the option as a unicode string.

Return type unicode string (unicode on py2, str on py3)

getsockopt
s.get(option)

Get the value of a socket option.
See the 0OMQ API documentation for details on specific options.

Parameters option (int)— The option to get. Available values will depend on your version
of libzmq. Examples include:

zmg.IDENTITY, HWM, LINGER, FD, EVENTS

Returns optval — The value of the option as a bytestring or int.

Return type int or bytes

getsockopt_string (option, encoding="utf-8’)
Get the value of a socket option.

See the 0OMQ documentation for details on specific options.

2.1.

The PyZMQ API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes

PyZMQ Documentation, Release 18.0.2

Parameters option (int)— The option to retrieve.
Returns optval — The value of the option as a unicode string.
Return type unicode string (unicode on py2, str on py3)

hwm
Get the High Water Mark.

On libzmq 3, this gets SNDHWM if available, otherwise RCVHWM
join

Join a RADIO-DISH group

Only for DISH sockets.

libzmq and pyzmq must have been built with ZMQ_BUILD_DRAFT_API

New in version 17.

leave
Leave a RADIO-DISH group

Only for DISH sockets.
libzmq and pyzmq must have been built with ZMQ_BUILD_DRAFT_API
New in version 17.

monitor
Start publishing socket events on inproc. See libzmq docs for zmq_monitor for details.

While this function is available from libzmq 3.2, pyzmq cannot parse monitor messages from libzmq prior
to 4.0.

Parameters

* addr (st r) - The inproc url used for monitoring. Passing None as the addr will cause an
existing socket monitor to be deregistered.

* events (int [default: zmq.EVENT_ALL]) — The zmq event bitmask for
which events will be sent to the monitor.

poll (timeout=None, flags=1)
Poll the socket for events. See Poller to wait for multiple sockets at once.

Parameters

e timeout (int [default: None])— The timeout (in milliseconds) to wait for an
event. If unspecified (or specified None), will wait forever for an event.

* flags (int [default: POLLIN]) - POLLIN, POLLOUT, or
POLLINIPOLLOUT. The event flags to poll for.

Returns events — The events that are ready and waiting, O if the timeout was reached with no
events.

Return type int

recv
Receive a message.

With flags=NOBLOCK, this raises ZMOError if no messages have arrived; otherwise, this waits until a
message arrives. See Poller for more general non-blocking I/O.

Parameters

10 Chapter 2. Using PyZMQ

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PyZMQ Documentation, Release 18.0.2

e flags (int)—0or NOBLOCK.

* copy (bool)— Should the message be received in a copying or non-copying manner? If
False a Frame object is returned, if True a string copy of message is returned.

e track (bool) — Should the message be tracked for notification that ZMQ has finished
with it? (ignored if copy=True)

Returns msg — The received message frame. If copy is False, then it will be a Frame, otherwise
it will be bytes.

Return type bytes or Frame

Raises ZMOError — for any of the reasons zmq_msg_recv might fail (including if NOBLOCK
is set and no new messages have arrived).

recv_json (flags=0, **kwargs)
Receive a Python object as a message using json to serialize.

Keyword arguments are passed on to json.loads
Parameters £lags (int)— Any valid flags for Socket . recv ().
Returns obj — The Python object that arrives as a message.
Return type Python object
Raises ZMOError — for any of the reasons recv () might fail

recv_multipart (flags=0, copy=True, track=False)
Receive a multipart message as a list of bytes or Frame objects

Parameters
» flags (int, optional)- Any valid flags for Socket.recv ().

* copy (bool, optional) - Should the message frame(s) be received in a copying or
non-copying manner? If False a Frame object is returned for each part, if True a copy of
the bytes is made for each frame.

e track (bool, optional)— Should the message frame(s) be tracked for notification
that ZMQ has finished with it? (ignored if copy=True)

Returns msg_parts — A list of frames in the multipart message; either Frames or bytes, depend-
ing on copy.

Return type list

Raises ZMOError — for any of the reasons recv () might fail

recv_pyobj (flags=0)
Receive a Python object as a message using pickle to serialize.

Parameters flags (int)— Any valid flags for Socket.recv ().
Returns obj — The Python object that arrives as a message.

Return type Python object

Raises ZMOError — for any of the reasons recv () might fail

recv_serialized (deserialize, flags=0, copy=True)
Receive a message with a custom deserialization function.

New in version 17.

Parameters

2.1.

The PyZMQ API 11

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

PyZMQ Documentation, Release 18.0.2

e deserialize (callable) — The deserialization function to use. deserialize will be
called with one argument: the list of frames returned by recv_multipart() and can return
any object.

e flags (int, optional)- Any valid flags for Socket.recv ().
* copy (bool, optional)-— Whether to recv bytes or Frame objects.
Returns obj — The object returned by the deserialization function.
Return type object
Raises ZMOError — for any of the reasons recv () might fail

recv_string (flags=0, encoding="utf-8’)
Receive a unicode string, as sent by send_string.

Parameters
e flags (int)— Any valid flags for Socket.recv ().
* encoding (str [default: 'utf-8'])-The encoding to be used
Returns s — The Python unicode string that arrives as encoded bytes.
Return type unicode string (unicode on py2, str on py3)
Raises ZMOError — for any of the reasons recv () might fail

send (data, flags=0, copy=True, track=False, routing_id=None, group=None)
Send a single zmq message frame on this socket.

This queues the message to be sent by the IO thread at a later time.

With flags=NOBLOCK, this raises ZMOError if the queue is full; otherwise, this waits until space is
available. See Pol Ier for more general non-blocking I/O.

Parameters

e data (bytes, Frame, memoryview) — The content of the message. This can be
any object that provides the Python buffer API (i.e. memoryview(data) can be called).

e flags (int) -0, NOBLOCK, SNDMORE, or NOBLOCKISNDMORE.
* copy (bool)— Should the message be sent in a copying or non-copying manner.

e track (bool) — Should the message be tracked for notification that ZMQ has finished
with it? (ignored if copy=True)

e routing_ id (int) - For use with SERVER sockets
» group (st r)— For use with RADIO sockets
Returns
* None (if copy or not track) — None if message was sent, raises an exception otherwise.

* MessageTracker (if track and not copy) — a MessageTracker object, whose pending prop-
erty will be True until the send is completed.

Raises
* TypeError —If a unicode object is passed
* ValueError — If track=True, but an untracked Frame is passed.

* ZMOError — If the send does not succeed for any reason (including if NOBLOCK is set
and the outgoing queue is full).

12 Chapter 2. Using PyZMQ

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#memoryview
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError

PyZMQ Documentation, Release 18.0.2

e .. versionchanged:: 17.0 — DRAFT support for routing_id and group arguments.

send__json (obj, flags=0, **kwargs)
Send a Python object as a message using json to serialize.

Keyword arguments are passed on to json.dumps
Parameters
* obj (Python object)— The Python object to send
» flags (int)— Any valid flags for Socket.send ()

send_multipart (msg_parts, flags=0, copy=True, track=False, **kwargs)
Send a sequence of buffers as a multipart message.

The zmq.SNDMORE flag is added to all msg parts before the last.
Parameters

* msg_parts (iterable)— A sequence of objects to send as a multipart message. Each
element can be any sendable object (Frame, bytes, buffer-providers)

e flags (int, optional)— Any valid flags for Socket.send (). SNDMORE is
added automatically for frames before the last.

* copy (bool, optional) - Should the frame(s) be sent in a copying or non-copying
manner. If copy=False, frames smaller than self.copy_threshold bytes will be copied any-
way.

e track (bool, optional)- Should the frame(s) be tracked for notification that ZMQ
has finished with it (ignored if copy=True).

Returns
* None (if copy or not track)

* MessageTracker (if track and not copy) — a MessageTracker object, whose pending prop-
erty will be True until the last send is completed.

send_pyobj (obj, flags=0, protocol=3, **kwargs)
Send a Python object as a message using pickle to serialize.

Parameters
* obj (Python object) - The Python object to send.

» flags (int)— Any valid flags for Socket.send ().

* protocol (int) — The pickle protocol number to use. The default is
pickle. DEFAULT_PROTOCOL where defined, and pickle. HIGHEST_PROTOCOL else-
where.

send_serialized (msg, serialize, flags=0, copy=True, **kwargs)
Send a message with a custom serialization function.

New in version 17.
Parameters
* msg (The message to be sent. Can be any object serializable by serialize.) —

* serialize (callable)— The serialization function to use. serialize(msg) should re-
turn an iterable of sendable message frames (e.g. bytes objects), which will be passed to
send_multipart.

» flags (int, optional)- Any valid flags for Socket.send ().

2.1.

The PyZMQ API 13

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PyZMQ Documentation, Release 18.0.2

* copy (bool, optional)— Whether to copy the frames.

send_string (u, flags=0, copy=True, encoding="utf-8’, **kwargs)
Send a Python unicode string as a message with an encoding.

0MQ communicates with raw bytes, so you must encode/decode text (unicode on py2, str on py3) around
OMQ.

Parameters

e u(Python unicode string (unicode on py2, str on py3))-Theuni-
code string to send.

e flags (int, optional)- Any valid flags for Socket.send().
* encoding (str [default: 'utf-8'])-The encoding to be used

set
Set socket options.

See the 0OMQ API documentation for details on specific options.
Parameters

* option (int) — The option to set. Available values will depend on your version of
libzmq. Examples include:

zmg.SUBSCRIBE, UNSUBSCRIBE, IDENTITY, HWM, LINGER, FD

e optval (int or bytes)— The value of the option to set.

Notes

Warning: All options other than zmq.SUBSCRIBE, zmq.UNSUBSCRIBE and zmq.LINGER only
take effect for subsequent socket bind/connects.

set_hwm (value)
Set the High Water Mark.

On libzmq 3, this sets both SNDHWM and RCVHWM

Warning: New values only take effect for subsequent socket bind/connects.

set_string (option, optval, encoding="utf-8’)
Set socket options with a unicode object.

This is simply a wrapper for setsockopt to protect from encoding ambiguity.
See the 0OMQ documentation for details on specific options.
Parameters

e option (int)— The name of the option to set. Can be any of: SUBSCRIBE, UNSUB-
SCRIBE, IDENTITY

* optval (unicode string (unicode on py2, str on py3)) — The value
of the option to set.

* encoding (str)— The encoding to be used, default is utf8

14 Chapter 2. Using PyZMQ

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

PyZMQ Documentation, Release 18.0.2

setsockopt
s.set(option, optval)

Set socket options.
See the 0OMQ API documentation for details on specific options.
Parameters

* option (int) — The option to set. Available values will depend on your version of
libzmq. Examples include:

zmg.SUBSCRIBE, UNSUBSCRIBE, IDENTITY, HWM, LINGER, FD

* optval (int or bytes) - The value of the option to set.

Notes

Warning: All options other than zmq.SUBSCRIBE, zmq.UNSUBSCRIBE and zmq.LINGER only
take effect for subsequent socket bind/connects.

setsockopt_string (option, optval, encoding="utf-8’)
Set socket options with a unicode object.

This is simply a wrapper for setsockopt to protect from encoding ambiguity.
See the 0OMQ documentation for details on specific options.
Parameters

* option (int)— The name of the option to set. Can be any of: SUBSCRIBE, UNSUB-
SCRIBE, IDENTITY

* optval (unicode string (unicode on pyZ2, str on py3)) — The value
of the option to set.

* encoding (st r) — The encoding to be used, default is utf8

classmethod shadow (address)
Shadow an existing libzmq socket

address is the integer address of the libzmq socket or an FFI pointer to it.
New in version 14.1.

subscribe (topic)
Subscribe to a topic

Only for SUB sockets.
New in version 15.3.

unbind
Unbind from an address (undoes a call to bind).

New in version libzmg-3.2.
New in version 13.0.

Parameters addr (st r)— The address string. This has the form ‘protocol://interface:port’, for
example ‘tcp://127.0.0.1:5555’. Protocols supported are tcp, upd, pgm, inproc and ipc. If the
address is unicode, it is encoded to utf-8 first.

2.1.

The PyZMQ API 15

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyZMQ Documentation, Release 18.0.2

underlying
The address of the underlying libzmq socket

unsubscribe (fopic)
Unsubscribe from a topic

Only for SUB sockets.

New in version 15.3.

Frame

class zmqg.Frame (data=None, track=False, copy=None, copy_threshold=zmq.COPY_THRESHOLD)
A zmq message Frame class for non-copy send/recvs.

This class is only needed if you want to do non-copying send and recvs. When you pass a string to this class,
like Frame (s), the ref-count of s is increased by two: once because the Frame saves s as an instance attribute
and another because a ZMQ message is created that points to the buffer of s. This second ref-count increase
makes sure that s lives until all messages that use it have been sent. Once OMQ sends all the messages and it
doesn’t need the buffer of s, OMQ will call Py_DECREF (s).

Parameters

* data (object, optional)— any object that provides the buffer interface will be used
to construct the OMQ message data.

e track (bool [default: False])— whether a MessageTracker should be created
to track this object. Tracking a message has a cost at creation, because it creates a threadsafe
Event object.

* copy (bool [default: wuse copy_threshold])— Whether to create a copy of
the data to pass to libzmq or share the memory with libzmgq. If unspecified, copy_threshold
is used.

* copy_threshold (int [default: zmg.COPY_THRESHOLD]) - If copy is un-
specified, messages smaller than this many bytes will be copied and messages larger than
this will be shared with libzmgq.

buffer
A read-only buffer view of the message contents.

bytes
The message content as a Python bytes object.

The first time this property is accessed, a copy of the message contents is made. From then on that same
copy of the message is returned.

get
Get a Frame option or property.

See the 0OMQ API documentation for zmq_msg_get and zmq_msg_gets for details on specific options.
New in version libzmg-3.2.

New in version 13.0.

Changed in version 14.3: add support for zmq_msg_gets (requires libzmqg-4.1)

Changed in version 17.0: Added support for routing_id and group. Only available if draft API is enabled
with libzmq >=4.2.

16 Chapter 2. Using PyZMQ

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

PyZMQ Documentation, Release 18.0.2

group
The RADIO-DISH group of the message.

Requires libzmq >= 4.2 and pyzmgq built with draft APIs enabled.
New in version 17.

routing id
The CLIENT-SERVER routing id of the message.

Requires libzmq >= 4.2 and pyzmgq built with draft APIs enabled.
New in version 17.

set
Set a Frame option.

See the OMQ API documentation for zmq_msg_set for details on specific options.
New in version libzmg-3.2.
New in version 13.0.

Changed in version 17.0: Added support for routing_id and group. Only available if draft API is enabled
with libzmq >=4.2.

MessageTracker

class zmg.MessageTracker (*towatch)
A class for tracking if OMQ is done using one or more messages.

When you send a 0OMQ message, it is not sent immediately. The OMQ IO thread sends the message at some later
time. Often you want to know when OMQ has actually sent the message though. This is complicated by the fact
that a single OMQ message can be sent multiple times using different sockets. This class allows you to track all
of the OMQ usages of a message.

Parameters towatch (Event, MessageTracker, Message instances.) — This ob-
jects to track. This class can track the low-level Events used by the Message class, other Mes-
sageTrackers or actual Messages.

done
Is OMQ completely done with the message(s) being tracked?

wait (timeout=-1)
Wait for OMQ to be done with the message or until timeout.

Parameters timeout (float [default: -1, wait forever]) - Maximum time
in (s) to wait before raising NotDone.

Returns if done before timeout
Return type None

Raises NotDone — if timeout reached before I am done.

Polling

Poller

class zmg.Poller
A stateful poll interface that mirrors Python’s built-in poll.

2.1. The PyZMQ API 17

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

PyZMQ Documentation, Release 18.0.2

modify (socket, flags=3)
Modify the flags for an already registered OMQ socket or native fd.

poll (timeout=None)
Poll the registered OMQ or native fds for I/O.

Parameters timeout (float, int) — The timeout in milliseconds. If None, no timeout
(infinite). This is in milliseconds to be compatible with select.poll ().

Returns events — The list of events that are ready to be processed. This is a list of tuples of
the form (socket, event), where the OMQ Socket or integer fd is the first element,
and the poll event mask (POLLIN, POLLOUT) is the second. It is common to call events
= dict (poller.poll ()), which turns the list of tuples into a mapping of socket
event.

Return type list of tuples

register (socket, flags=POLLINIPOLLOUT)
Register a OMQ socket or native fd for I/O monitoring.

register(s,0) is equivalent to unregister(s).
Parameters

* socket (zmg.Socket or native socket)-— A zmq.Socket or any Python object
having a fileno () method that returns a valid file descriptor.

e flags (int) — The events to watch for. Can be POLLIN, POLLOUT or
POLLINIPOLLOUT. If flags=0, socket will be unregistered.

unregister (socket)
Remove a OMQ socket or native fd for I/O monitoring.

Parameters socket (Socket)— The socket instance to stop polling.

zmq . select (rlist, wlist, xlist, timeout=None) -> (rlist, wlist, xlist)
Return the result of poll as a lists of sockets ready for r/w/exception.

This has the same interface as Python’s built-in select.select () function.
Parameters

e timeout (float, int, optional) - The timeout in seconds. If None, no timeout
(infinite). This is in seconds to be compatible with select .select ().

* rlist (list of sockets/FDs) - sockets/FDs to be polled for read events
* wlist (1ist of sockets/FDs)— sockets/FDs to be polled for write events
* xlist (1ist of sockets/FDs)— sockets/FDs to be polled for error events

Returns (rlist, wlist, xlist) — Lists correspond to sockets available for read/write/error events re-
spectively.

Return type tuple of lists of sockets (length 3)

Exceptions

ZMQError

class zmqg.ZMQError (errno=None, msg=None)
Wrap an errno style error.

18 Chapter 2. Using PyZMQ

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

PyZMQ Documentation, Release 18.0.2

Parameters
e errno (int)—The ZMQ errno or None. If None, then zmg_errno () is called and used.
* msg (string) — Description of the error or None.

with traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.

ZMQVersionError

class zmg.ZMQVersionError (min_version, msg="Feature’)
Raised when a feature is not provided by the linked version of libzmg.

New in version 14.2.

with traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.

Again

class zmg.Again (errno="ignored’, msg="ignored’)
Wrapper for zmq.EAGAIN

New in version 13.0.

ContextTerminated

class zmg.ContextTerminated (errno="ignored’, msg="ignored’)
Wrapper for zmq.ETERM

New in version 13.0.

NotDone

class zmg.NotDone
Raised when timeout is reached while waiting for OMQ to finish with a Message

See also:

MessageTracker.wait object for tracking when ZeroMQ is done

ZMOBindError

class zmg.ZMQBindError
An error for Socket .bind_to_random_port ().

See also:

Socket .bind_to_random_port

2.1. The PyZMQ API 19

https://docs.python.org/3/library/functions.html#int

PyZMQ Documentation, Release 18.0.2

Functions

zmg.

zmg

zmg.

zmg

zmg

zmdg .

zmg

zmqg version ()
return the version of libzmq as a string

.pyzmg_version ()

return the version of pyzmgq as a string

zmg version_info ()
Return the version of ZeroMQ itself as a 3-tuple of ints.

.pyzmg version_info ()

return the pyzmgq version as a tuple of at least three numbers

If pyzmgq is a development version, inf will be appended after the third integer.

.has ()

Check for zmq capability by name (e.g. ‘ipc’, ‘curve’)
New in version libzmg-4.1.
New in version 14.1.

device (device_type, frontend, backend)
Start a zeromq device.

Deprecated since version libzmg-3.2: Use zmq.proxy
Parameters
* device_ type ((QUEUE, FORWARDER, STREAMER))- The type of device to start.
» frontend (Socket) — The Socket instance for the incoming traffic.

e backend (Socket) — The Socket instance for the outbound traffic.

.proxy (frontend, backend, capture)

Start a zeromq proxy (replacement for device).
New in version libzmg-3.2.
New in version 13.0.
Parameters
» frontend (Socket) — The Socket instance for the incoming traffic.
¢ backend (Socket) — The Socket instance for the outbound traffic.

* capture (Socket (optional))— The Socket instance for capturing traffic.

zmq . proxy_steerable (frontend, backend, capture, control)

Start a zeromq proxy with control flow.
New in version libzmg-4.1.
New in version 18.0.
Parameters
* frontend (Socket) — The Socket instance for the incoming traffic.
e backend (Socket) — The Socket instance for the outbound traffic.
* capture (Socket (optional))— The Socket instance for capturing traffic.

e control (Socket (optional))— The Socket instance for control flow.

20

Chapter 2. Using PyZMQ

PyZMQ Documentation, Release 18.0.2

zmq.curve_public ()
Compute the public key corresponding to a secret key for use with zmq.CURVE security

Requires libzmq (4.2) to have been built with CURVE support.
Parameters private — The private key as a 40 byte z85-encoded bytestring
Returns The public key as a 40 byte z85-encoded bytestring.
Return type bytestring

zmqg.curve_keypair ()
generate a Z85 keypair for use with zmq.CURVE security

Requires libzmq (4.0) to have been built with CURVE support.

New in version libzmg-4.0.

New in version 14.0.
Returns (public, secret) — The public and private keypair as 40 byte z85-encoded bytestrings.
Return type two bytestrings

zmg.get_includes ()
Return a list of directories to include for linking against pyzmq with cython.

zmg.get_library dirs()
Return a list of directories used to link against pyzmgq’s bundled libzmg.

2.1.2 devices
Functions
zmq . device (device_type, frontend, backend)
Start a zeromq device.
Deprecated since version libzmg-3.2: Use zmq.proxy
Parameters
* device_type ((QUEUE, FORWARDER, STREAMER))— The type of device to start.
* frontend (Socket) — The Socket instance for the incoming traffic.

* backend (Socket) — The Socket instance for the outbound traffic.

zmq . proxy (frontend, backend, capture)
Start a zeromq proxy (replacement for device).

New in version libzmg-3.2.
New in version 13.0.
Parameters
* frontend (Socket) — The Socket instance for the incoming traffic.
* backend (Socket) — The Socket instance for the outbound traffic.
* capture (Socket (optional))— The Socket instance for capturing traffic.

zmq . proxy_steerable (frontend, backend, capture, control)
Start a zeromq proxy with control flow.

New in version libzmg-4.1.

2.1. The PyZMQ API 21

PyZMQ Documentation, Release 18.0.2

New in version 18.0.
Parameters
* frontend (Socket) — The Socket instance for the incoming traffic.
¢ backend (Socket) — The Socket instance for the outbound traffic.
* capture (Socket (optional))— The Socket instance for capturing traffic.

e control (Socket (optional))— The Socket instance for control flow.

Module: zmqg.devices

0OMQ Device classes for running in background threads or processes.

Base Devices

Device

class zmg.devices.Device (device_type=3, in_type=None, out_type=None)
A OMQ Device to be run in the background.

You do not pass Socket instances to this, but rather Socket types:

’Device(device_type, in_socket_type, out_socket_type)

For instance:

’dev = Device (zmg.QUEUE, zmg.DEALER, zmqg.ROUTER)

Similar to zmq.device, but socket types instead of sockets themselves are passed, and the sockets are created in
the work thread, to avoid issues with thread safety. As a result, additional bind_{inlout} and connect_{inlout}
methods and setsockopt_{inlout} allow users to specify connections for the sockets.

Parameters
* device_type (int) - The OMQ Device type

* {in|out}_type (int) — zmq socket types, to be passed later to context.socket(). e.g.
zmq.PUB, zmq.SUB, zmq.REQ. If out_type is <0, then in_socket is used for both in_socket
and out_socket.

bind {in_out} (iface)
passthrough for {in|out}_socket.bind (iface), to be called in the thread

connect_{in_out} (iface)
passthrough for {in|out}_socket.connect (iface), to be called in the thread

setsockopt_{in_out} (opt, value)
passthrough for {in|out}_socket.setsockopt (opt, value), to be called in the thread

daemon
sets whether the thread should be run as a daemon Default is true, because if it is false, the thread will not
exit unless it is killed

Type int

22 Chapter 2. Using PyZMQ

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PyZMQ Documentation, Release 18.0.2

context_factory
Function for creating the Context. This will be Context.instance in ThreadDevices, and Context in Pro-
cessDevices. The only reason it is not instance() in ProcessDevices is that there may be a stale Context
instance already initialized, and the forked environment should never try to use it.

Type callable (class attribute)

bind_in (addr)
Enqueue ZMQ address for binding on in_socket.

See zmq.Socket.bind for details.

bind_in_to_random_port (addr, *args, **kwargs)
Enqueue a random port on the given interface for binding on in_socket.

See zmq.Socket.bind_to_random_port for details.
New in version 18.0.

bind out (addr)
Enqueue ZMQ address for binding on out_socket.

See zmq.Socket.bind for details.

bind_ out_to_random port (addr, *args, **kwargs)
Enqueue a random port on the given interface for binding on out_socket.

See zmq.Socket.bind_to_random_port for details.
New in version 18.0.

connect_in (addr)
Enqueue ZMQ address for connecting on in_socket.

See zmgq.Socket.connect for details.

connect_out (addr)
Enqueue ZMQ address for connecting on out_socket.

See zmgq.Socket.connect for details.

join (timeout=None)
wait for me to finish, like Thread.join.

Reimplemented appropriately by subclasses.

setsockopt_in (opt, value)
Enqueue setsockopt(opt, value) for in_socket

See zmq.Socket.setsockopt for details.

setsockopt_out (opt, value)
Enqueue setsockopt(opt, value) for out_socket

See zmq.Socket.setsockopt for details.

start ()
Start the device. Override me in subclass for other launchers.

ThreadDevice

class zmg.devices.ThreadDevice (device_type=3, in_type=None, out_type=None)
A Device that will be run in a background Thread.

2.1. The PyZMQ API 23

PyZMQ Documentation, Release 18.0.2

See Device for details.

ProcessDevice

class zmg.devices.ProcessDevice (device_type=3, in_type=None, out_type=None)
A Device that will be run in a background Process.

See Device for details.

context_factory
alias of zmg. sugar.context.Context

Proxy Devices

Proxy

class zmg.devices.Proxy (in_type, out_type, mon_type=1)
Threadsafe Proxy object.

See zmgq.devices.Device for most of the spec. This subclass adds a <method>_mon version of each
<method>_{inlout} method, for configuring the monitor socket.

A Proxy is a 3-socket ZMQ Device that functions just like a QUEUE, except each message is also sent out on
the monitor socket.

A PUB socket is the most logical choice for the mon_socket, but it is not required.

bind_mon (addr)
Enqueue ZMQ address for binding on mon_socket.

See zmq.Socket.bind for details.

connect_mon (addr)
Enqueue ZMQ address for connecting on mon_socket.

See zmq.Socket.connect for details.

setsockopt_mon (opt, value)
Enqueue setsockopt(opt, value) for mon_socket

See zmgq.Socket.setsockopt for details.

ThreadProxy

class zmg.devices.ThreadProxy (in_type, out_type, mon_type=1)
Proxy in a Thread. See Proxy for more.

ProcessProxy

class zmg.devices.ProcessProxy (in_type, out_type, mon_type=1)
Proxy in a Process. See Proxy for more.

24 Chapter 2. Using PyZMQ

PyZMQ Documentation, Release 18.0.2

ProxySteerable

class zmg.devices.ProxySteerable (in_type, out_type, mon_type=1, ctrl_type=None)
Class for running a steerable proxy in the background.

See zmgq.devices.Proxy for most of the spec. If the control socket is not NULL, the proxy supports control flow,
provided by the socket.

If PAUSE is received on this socket, the proxy suspends its activities. If RESUME is received, it goes on. If
TERMINATE is received, it terminates smoothly. If the control socket is NULL, the proxy behave exactly as if
zmgq.devices.Proxy had been used.

This subclass adds a <method>_ctrl version of each <method>_{inlout} method, for configuring the control
socket.

New in version libzmg-4.1.
New in version 18.0.

bind_ctrl (addr)
Enqueue ZMQ address for binding on ctrl_socket.

See zmq.Socket.bind for details.

connect_ctrl (addr)
Enqueue ZMQ address for connecting on ctrl_socket.

See zmq.Socket.connect for details.

setsockopt_ctrl (opt, value)
Enqueue setsockopt(opt, value) for ctrl_socket

See zmq.Socket.setsockopt for details.

ThreadProxySteerable

class zmg.devices.ThreadProxySteerable (in_type, out_type, mon_type=1, ctrl_type=None)
ProxySteerable in a Thread. See ProxySteerable for details.

ProcessProxySteerable

class zmg.devices.ProcessProxySteerable (in_type, out_type, mon_type=1, ctrl_type=None)
ProxySteerable in a Process. See ProxySteerable for details.

MonitoredQueue Devices

zmg.devices.monitored queue ()
monitored_queue(in_socket, out_socket, mon_socket, in_prefix=b’in’, out_prefix=b’out’)
Start a monitored queue device.
A monitored queue is very similar to the zmq.proxy device (monitored queue came first).
Differences from zmq.proxy:
* monitored_queue supports both in and out being ROUTER sockets (via swapping IDENTITY prefixes).

* monitor messages are prefixed, making in and out messages distinguishable.

2.1. The PyZMQ API 25

PyZMQ Documentation, Release 18.0.2

Parameters

* in_socket (Socket) — One of the sockets to the Queue. Its messages will be prefixed
with ‘in’.

* out_socket (Socket) — One of the sockets to the Queue. Its messages will be prefixed
with ‘out’. The only difference between in/out socket is this prefix.

* mon_socket (Socket) — This socket sends out every message received by each of the
others with an in/out prefix specifying which one it was.

* in_prefix (str)— Prefix added to broadcast messages from in_socket.

* out_prefix (str)— Prefix added to broadcast messages from out_socket.

MonitoredQueue

class zmg.devices.MonitoredQueue (in_type, out_type, mon_type=1, in_prefix=b’in’,
out_prefix=b’out’)
Class for running monitored_queue in the background.

See zmgq.devices.Device for most of the spec. MonitoredQueue differs from Proxy, only in thatitadds aprefix
to messages sent on the monitor socket, with a different prefix for each direction.

MQ also supports ROUTER on both sides, which zmq.proxy does not.

If a message arrives on in_sock, it will be prefixed with in_prefix on the monitor socket. If it arrives on out_sock,
it will be prefixed with out_prefix.

A PUB socket is the most logical choice for the mon_socket, but it is not required.

ThreadMonitoredQueue

class zmg.devices.ThreadMonitoredQueue (in_type, out_type, mon_type=1, in_prefix=b’in’,
out_prefix=b’out’)
Run zmq.monitored_queue in a background thread.

See MonitoredQueue and Proxy for details.

ProcessMonitoredQueue

class zmg.devices.ProcessMonitoredQueue (in_type, out_type, mon_type=I1, in_prefix=>b’in’,
out_prefix=b’out’)
Run zmg.monitored_queue in a background thread.

See MonitoredQueue and Proxy for details.

2.1.3 decorators

Module: zmqg.decorators

Decorators for running functions with context/sockets.
New in version 15.3.

Like using Contexts and Sockets as context managers, but with decorator syntax. Context and sockets are closed at
the end of the function.

26 Chapter 2. Using PyZMQ

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyZMQ Documentation, Release 18.0.2

For example:

from zmg.decorators import context, socket

@context ()
@socket (zmg.PUSH)
def work (ctx, push):

Decorators

zmg.decorators.context (*args, **kwargs)
Decorator for adding a Context to a function.

Usage:

@context ()
def foo(ctx):

New in version 15.3.
Parameters name (st r) — the keyword argument passed to decorated function

zmg.decorators.socket (*args, **kwargs)
Decorator for adding a socket to a function.

Usage:

@socket (zmg.PUSH)
def foo (push):

New in version 15.3.
Parameters
* name (st r) — the keyword argument passed to decorated function

* context_name (st r) - the keyword only argument to identify context object
2.1.4 green

Module: green

zmgq.green - gevent compatibility with zeromq.

Usage

Instead of importing zmgq directly, do so in the following manner:
import zmq.green as zmq
Any calls that would have blocked the current thread will now only block the current green thread.

This compatibility is accomplished by ensuring the nonblocking flag is set before any blocking operation and the GMQ
file descriptor is polled internally to trigger needed events.

2.1. The PyZMQ API 27

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyZMQ Documentation, Release 18.0.2

2.1.5 eventloop.ioloop

Module: eventloop.ioloop

tornado IOLoop API with zmq compatibility

This module is deprecated in pyzmq 17. To use zmq with tornado, eventloop integration is no longer required and
tornado itself should be used.

Classes

ZMQIOLoop

class zmg.eventloop.ioloop.ZMQIOLoop
ZMQ subclass of tornado’s IOLoop

Minor modifications, so that .current/.instance return self

Function
zmg.eventloop.ioloop.install ()
set the tornado IOLoop instance with the pyzmq IOLoop.

After calling this function, tornado’s IOLoop.instance() and pyzmq’s